Significant progress has been made in the area of advanced modes of operation that are candidates for achieving steady state conditions in a fusion reactor. The corresponding parameters, domain of operation, scenarios and integration issues of advanced scenarios are discussed in this chapter. A review of the presently developed scenarios, including discussions on operational space, is given. Significant progress has been made in the domain of heating and current drive in recent years, especially in the domain of off-axis current drive, which is essential for the achievement of the required current profile. The actuators for heating and current drive that are necessary to produce and control the advanced tokamak discharges are discussed, including modelling and predictions for ITER. The specific control issues for steady state operation are discussed, including the already existing experimental results as well as the various strategies and needs (qψ profile control and temperature gradients). Achievable parameters for the ITER steady state and hybrid scenarios with foreseen heating and current drive systems are discussed using modelling including actuators, allowing an assessment of achievable current profiles. Finally, a summary is given in the last section including outstanding issues and recommendations for further research and development.
Abstract. Optimal design and use of electron cyclotron heating (ECH) requires that accurate and relatively quick computer codes be available for prediction of wave coupling, propagation, damping, and current drive at realistic levels of EC power. To this end, a number of codes have been developed in laboratories worldwide. A detailed comparison of these codes is desirable since they use a variety of methods for modeling 2 the behavior and effects of the waves. The approach used in this benchmarking study is to apply these codes to a small number of representative cases. Following minor remedial work on some codes, the agreement between codes for off-axis application is excellent.The largest systematic differences are found between codes with weakly relativistic and fully relativistic evaluation of the resonance condition, but even there the differences amount to less than 0.02 in normalized minor radius. For some other cases, for example for central current drive, the code results may differ significantly due to differences in the physics models used.
Requirements for pellet injection parameters for plasma fuelling are assessed for ITER scenarios with enhanced particle confinement. The assessment is based on the integrated transport simulations including models of pedestal transport, reduction of helium transport and boundary conditions compatible with SOL/divertor simulations. The requirements for pellet injection for the inductive H-mode scenario (H H98y,2 = 1) are reconsidered taking account of a possible reduction of the particle loss obtained in some experiments at low collisionalities. The assessment of fuelling requirements is carried out for the hybrid and steady state scenarios with enhanced confinement with H H98y,2 > 1. A robustness of plasma performance to the variation of particle transport is demonstrated. A new type of steady state (SS) scenario is considered with neutral beam current drive (NBCD) and electron cyclotron current drive (ECCD) instead of lower hybrid current drive (LHCD) to extend the range of stable operation and to avoid the reduction of the edge LHCD efficiency caused by pellet injection.
No abstract
We present integrated modelling of steady-state and hybrid scenarios for ITER parameters using several predictive transport codes. These employ models for non-inductive current drive sources in conjunction with various theory-based and semi-empirical transport models. In conjunction with the simulation effort, the current drive models are being evaluated in a series of cross-code and code-experiment comparisons under ITER-relevant conditions. New benchmark evaluations of current drive from injection of neutral beams (NBCD), electron cyclotron waves (ECCD) and lower hybrid waves (LHCD) are reported. Simulations using several transport modelling codes self-consistently calculate the heating and current drive sources using ITER design parameters. Operating constraints are also taken into account, although the calculations reported here still require further refinement. The modelling addresses both the final stationary state and dynamic access to it. The simulations indicate that generation and control of internal and edge barriers to access and maintain high confinement will be a major undertaking for future simulations, as well as a challenge for the ITER steady-state and hybrid experimental programme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.