The water-proton spin-lattice relaxation rate constant, 1/T(1), was measured as a function of magnetic field strength for several dilute protein solutions. By separating the intermolecular contributions from the intramolecular contributions to the water-proton spin-lattice relaxation, the number of water molecules that bind to the protein for a time long compared with the rotational correlation time may be measured. We find a good correlation between the number of long-lived water molecules and the predictions based on available free volume in the proteins studied. The rotational correlation times of these proteins are larger than predicted by the Stokes-Einstein-Debye (SED) model for a sphere reorienting in a viscous liquid. The discrepancy between experiment and theory is usually attributed to hydration effects increasing the effective radius of the particle. However, the average lifetime of water molecules at the protein interface is far too short to justify such a picture. We suggest that surface roughness may be responsible for the retardation of rotational mobility and find that the SED model provides a reasonable representation of experiment if the radius assumed for the reorienting particle is the arithmetic mean of the crystallographic packing radius and the radius deduced from the effective surface area of the protein.
The magnetic relaxation dispersion profiles for formate, acetate, and water protons are reported for aqueous solutions of hemoglobin singly and doubly labeled with a nitroxide and mercury(II) ion at cysteines at beta-93. Using two spin labels, one nuclear and one electron spin, a long intramolecular vector is defined between the two beta-93 positions in the protein. The paramagnetic contributions to the observed 1H spin-lattice relaxation rate constant are isolated from the magnetic relaxation dispersion profiles obtained on a dual-magnet apparatus that provides spectral density functions characterizing fluctuations sensed by intermoment dipolar interactions in the time range from the tens of microseconds to approximately 1 ps. Both formate and acetate ions are found to bind specifically within 5 angstroms of the beta-93 spin-label position and the relaxation dispersion has inflection points corresponding to correlation times of 30 ps and 4 ns for both ions. The 4-ns motion is identified with exchange of the anions from the site, whereas the 30-ps correlation time is identified with relative motions of the spin label and the bound anion in the protein environment close to beta-93. The magnetic field dependence of the paramagnetic contributions in both cases is well described by a simple Lorentzian spectral density function; no peaks in the spectral density function are observed. Therefore, the high frequency motions of the protein monitored by the intramolecular vector defined by the electron and nuclear spin are well characterized by a stationary random function of time. Attempts to examine long vector fluctuations by employing electron spin and nuclear spin double-labeling techniques did not yield unambiguous characterization of the high frequency motions of the vector between beta-93 positions on different chains.
We present the first results obtained by proton ((1)H) nuclear magnetic relaxation studies of molecular dynamics in a supermolecular liquid-crystal dendrimer exhibiting columnar rectangular and smectic-A phases. The (1)H spin-lattice relaxation time (T(1)) dispersions are interpreted using two relaxation mechanisms associated with collective motions and local molecular reorientations of the dendritic segments in the low- and high-frequency ranges, respectively. The T(1) values show a drop around 2.3 MHz that is attributed to a contribution coming from cross-relaxation between (1)H and nitrogen nuclear spins. In the high-frequency range the motions appear to be of similar nature in both mesophases and are ascribed to reorientations of dendritic segments (belonging to the core and/or to the mesogenic units) characterized by two correlation times. Notable differences in the dynamics between the columnar and layered phases are observed in the low-frequency range. Depending on the mesophase they are discussed in terms of elastic deformations of the columns and layer undulations. In this study we find that the dendritic core influences the dynamics of the mesogenic units both for local and collective motions. These results can be understood in terms of spatial constraints imposed by the dendritic architecture and by the supermolecular arrangement in the mesophases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.