Tunable oscillatory modes of electric-field domains in doped semiconductor
superlattices are reported. The experimental investigations demonstrate the
realization of tunable, GHz frequencies in GaAs-AlAs superlattices covering the
temperature region from 5 to 300 K. The orgin of the tunable oscillatory modes
is determined using an analytical and a numerical modeling of the dynamics of
domain formation. Three different oscillatory modes are found. Their presence
depends on the actual shape of the drift velocity curve, the doping density,
the boundary condition, and the length of the superlattice. For most bias
regions, the self-sustained oscillations are due to the formation, motion, and
recycling of the domain boundary inside the superlattice. For some biases, the
strengths of the low and high field domain change periodically in time with the
domain boundary being pinned within a few quantum wells. The dependency of the
frequency on the coupling leads to the prediction of a new type of tunable GHz
oscillator based on semiconductor superlattices.Comment: Tex file (20 pages) and 16 postscript figure
We analyze the dynamics of charge distributions in weakly coupled, doped, dc voltage biased semiconductor superlattices subject to voltage steps of different sizes. Qualitatively different current responses to voltage switching processes have been observed experimentally. We explain them by invoking distinct scenarios for electric-field domain formation, validated by numerical simulations. Furthermore, we investigate the transient from an unstable to a stable point in the current-voltage characteristics after a steplike or ramplike increase of the external voltage.
In weakly coupled, current biased, doped semiconductor superlattices, domain walls may move upstream against the flow of electrons. For appropriate doping values, a domain wall separating two electric-field domains moves downstream below a first critical current, it remains stationary between this value and a second critical current, and then moves upstream above. These conclusions are reached by using a comparison principle to analyze a discrete drift-diffusion model, and validated by numerical simulations. Possible experimental realizations are suggested.
We review the occurrence of electric-field domains in doped superlattices within a discrete drift model. A complete analysis of the construction and stability of stationary field profiles having two domains is carried out. As a consequence, we can provide a simple analytical estimation for the doping density above which stable stable domains occur. This bound may be useful for the design of superlattices exhibiting self-sustained current oscillations. Furthermore we explain why stable domains occur in superlattices in contrast to the usual Gunn diode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.