A complete description of the numerical analysis of quantum waveguide structures and devices is given. Modal expansions of the wave function together with a mode-matching technique are utilized to calculate the generalized scattering matrices (GSMs) of junctions or discontinuities and uniform waveguide sections. The different GSMs are combined via an extended generalized scattering-matrix technique to obtain the scattering parameters of composite quantum waveguide structures. Results for cascaded right-angle bends and periodic multiwaveguide structures in a split-gate configuration are presented. A sharp transition to a plateau of zero conductance is observed for the double-bend configuration. For the periodic multiwaveguide structures, strong resonant behavior similar to that in resonant tunneling diodes is found. Calculated current-voltage characteristics for the special case of a double constriction are shown, exhibiting a region of negative-differential resistance (NDR) for temperatures up to approximately 10 K with a peak-to-valley ratio of about 2.5:1 at zero temperature. Using a simple design procedure, the temperature range with achievable NDR is extended to up to approximately 60 K with a peak-to-valley ratio of over 80:1 at zero temperature.
We have used the modal expansion of the wave function in the discontinuity region based on the superposition principle together with a mode-matching technique to investigate the transmission characteristics of semiconductor quantum wire structures with discontinuities. Our calculations compare quite well with published results for the theoretical transmission coefficient and experimental conductance of a T-stub and split-gate geometry, respectively. We apply this technique to analyze the effect of right-angle bends in narrow quantum wires which show strong resonant behavior due to the presence of discontinuities in this geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.