In this paper, a comparison of TiO2 thin films prepared by magnetron sputtering with a continuous and pulsed gas flow was presented. Structural, surface, optical, and mechanical properties of deposited titanium dioxide coatings were analyzed with the use of a wide range of measurement techniques. It was found that thin films deposited with a gas impulse had a nanocrystalline rutile structure instead of fibrous-like anatase obtained with a continuous gas flow. TiO2 thin films deposited with both techniques were transparent in the visible wavelength range, however, a much higher refractive index and packing density were observed for coatings deposited by the pulsed gas technique. The application of a gas impulse improved the hardness and scratch resistance of the prepared TiO2 thin films.
The aim of this work is to determine the influence of medium frequency magnetron sputtering powers on the various properties of hafnium dioxide (HfO2) thin films. Microstructure observations show that an increase in the sputtering power has a significant influence on HfO2 films’ microstructure. As-deposited hafnia thin films exhibit nanocrystalline structure with a monoclinic phase, however thr rise of the sputtering power results in an increase of crystallite sizes. Atomic force microscopy investigations show that the surface of the deposited films is smooth, crack-free, and composed of visible grains. The surface roughness and the value of the water contact angle increase with the increase of the sputtering power. Measurements of the optical properties show that HfO2 coatings are transparent in the visible wavelength range. A higher sputtering power causes a decrease of an average transmittance level and a simultaneous increase of the real part of the refractive index. Nanoindentation measurements reveal that the thin film hardness and Young’s elastic modulus increase with an increase in the sputtering power. Moreover, the results of plasticity index H/E and plastic resistance parameter H3/E2 are discussed. Based on the obtained results, a correlation between the sputtering power and the structural, surface, and optical properties, as well as the hardness and Young’s elastic modulus, were determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.