In this paper, a comparison of TiO2 thin films prepared by magnetron sputtering with a continuous and pulsed gas flow was presented. Structural, surface, optical, and mechanical properties of deposited titanium dioxide coatings were analyzed with the use of a wide range of measurement techniques. It was found that thin films deposited with a gas impulse had a nanocrystalline rutile structure instead of fibrous-like anatase obtained with a continuous gas flow. TiO2 thin films deposited with both techniques were transparent in the visible wavelength range, however, a much higher refractive index and packing density were observed for coatings deposited by the pulsed gas technique. The application of a gas impulse improved the hardness and scratch resistance of the prepared TiO2 thin films.
In this paper, the influence of material composition on structure and surface properties of bioactive coatings based on Cu and Ti is described. Nanocrystalline coatings were prepared by innovative pulsed DC magnetron sputtering. For their preparation, a multi-magnetron system was used in order to obtain films with various copper content. The main goal of our work was the complex analysis of biological activity of Cu-Ti films in comparison with their material composition and surface state. Antimicrobial activity (for E. coli and S. aureus), as well as the impact on cell viability (L929 line), were investigated. The physicochemical properties were examined with the aid of X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and atomic absorption spectroscopy. It was found that all prepared films were nanocrystalline and bactericidal, but their cytotoxicity was related to the Cu-content in the film. Complex analysis of the bioactivity was developed in relation to the copper ion migration process. Moreover, manufacturing of antibacterial films with stimulating action on L929 cell line was possible.
The aim of this work is to determine the influence of medium frequency magnetron sputtering powers on the various properties of hafnium dioxide (HfO2) thin films. Microstructure observations show that an increase in the sputtering power has a significant influence on HfO2 films’ microstructure. As-deposited hafnia thin films exhibit nanocrystalline structure with a monoclinic phase, however thr rise of the sputtering power results in an increase of crystallite sizes. Atomic force microscopy investigations show that the surface of the deposited films is smooth, crack-free, and composed of visible grains. The surface roughness and the value of the water contact angle increase with the increase of the sputtering power. Measurements of the optical properties show that HfO2 coatings are transparent in the visible wavelength range. A higher sputtering power causes a decrease of an average transmittance level and a simultaneous increase of the real part of the refractive index. Nanoindentation measurements reveal that the thin film hardness and Young’s elastic modulus increase with an increase in the sputtering power. Moreover, the results of plasticity index H/E and plastic resistance parameter H3/E2 are discussed. Based on the obtained results, a correlation between the sputtering power and the structural, surface, and optical properties, as well as the hardness and Young’s elastic modulus, were determined.
The paper presents the results of an investigation of the influence of technological parameters on the microstructure, optical, electrical and nanomechanical properties of zinc oxide coatings prepared using the pulsed reactive magnetron sputtering method. Three sets of ZnOx thin films were deposited in metallic, shallow dielectric and deep dielectric sputtering modes. Structural investigations showed that thin films deposited in the metallic mode were nanocrystalline with mixed hexagonal phases of metallic zinc and zinc oxide with crystallite size of 9.1 and 6.0 nm, respectively. On the contrary, the coatings deposited in both dielectric modes had a nanocrystalline ZnO structure with an average crystallite size smaller than 10 nm. Moreover, coatings deposited in the dielectric modes had an average transmission of 84% in the visible wavelength range, while thin films deposited in the metallic mode were opaque. Measurements of electrical properties revealed that the resistivity of as-deposited thin films was in the range of 10−4 Ωcm to 108 Ωcm. Coatings deposited in the metallic mode had the lowest hardness of 2.2 GPa and the worst scratch resistance among all sputtered coatings, whereas the best mechanical properties were obtained for the film sputtered in the deep dielectric mode. The obtained hardness of 11.5 GPa is one of the highest reported to date in the literature for undoped ZnO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.