With the recent advancements in the fields of machine learning and artificial intelligence, spoken language identification-based applications have been increasing in terms of the impact they have on the day-to-day lives of common people. Western countries have been enjoying the privilege of spoken language recognition-based applications for a while now, however, they have not gained much popularity in multi-lingual countries like India owing to various complexities. In this paper, we have addressed this issue by attempting to identify different Indian languages based on various well-known features like Mel-Frequency Cepstral Coefficient (MFCC), Linear Prediction Coefficient (LPC), Discrete Wavelet Transform (DWT), Gammatone Frequency Cepstral Coefficient (GFCC) as well as a few deep learning architecture based features like i-vector and x-vector extracted from the audio signals. After comparing the initial results, it is observed that the combination of MFCC and LPC produces the best results. Then we have developed a new nature-inspired feature selection (FS) algorithm by hybridizing Binary Bat Algorithm (BBA) with Late Acceptance Hill-Climbing (LAHC) to select the optimal subset from the said feature vectors in order to reduce the model complexity and help it train faster. Using Random Forest (RF) classifier, we have achieved an accuracy of 92.35% on Indic TTS database developed by IIT-Madras, and an accuracy of 100%
This era is dominated by artificial intelligence and its various applications-one of which is Spoken Language Identification (S-LID) which has always been a challenging issue and an important research area in the domain of speech signal processing. This paper deals with SLID to be used for Human-Computer Interaction (HCI) based applications by attempting to classify various languages from three multilingual databases namely CSS10: A Collection of Single Speaker Speech Datasets for 10 Languages, VoxForge and Indian Institute of Technology, Madras (IIT-Madras) speech corpus database by extracting their Mel-Spectrogram features and Relative Spectral Transform-Perceptual Linear Prediction (RASTA-PLP) features. A new hybrid Feature Selection (FS) algorithm have been developed using the versatile Harmony Search (HS) algorithm and a new nature-inspired algorithm called Naked Mole-Rat (NMR) algorithm to select the best subset of features and reduce the model complexity to help it train faster. This selected feature set is fed to five classifiers namely Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Multi-layer Perceptron (MLP), Naïve Bayes (NB) and Random Forest (RF). The evaluation measures used in this paper are precision, recall, f1-score, classification accuracy and number of selected features. An accuracy of 99.89% on CSS10, 98.22% on VoxForge and 99.75% on IIT-Madras speech corpus databases is achieved using RF. Furthermore, the proposed algorithm is found to outperform 15 standard meta-heuristic FS algorithms.
An intelligent computer-aided diagnostics system may be developed to assist the radiologists to recognize the masses / lesions appearing in breast in different groups of benignancy / malignancy. In present work we have attempted to develop a computer assisted treatment planning system implementing Genetic algorithm based Neuro-fuzzy approaches. The boundary based features of the tumor lesions appearing in breast have been extracted for classification. The shape features represented by Fourier Descriptors, introduce a large number of feature vectors. Thus to classify different boundaries, a standard classifier needs a large number of inputs, and simultaneously to train the classifier a large number of training cycles are required. This may invite the problem of over learning, followed by chance of misclassification. In proposed methodology, Genetic Algorithm (GA) has been used for searching of significant input feature vectors. Finally adaptive neuro fuzzy based classifier has been introduced for classification of tumor masses in breast.
A phenotype is the composite of an observable expression of a genome for traits in a given environment. The trajectories of phenotypes computed from an image sequence and timing of important events in a plant’s life cycle can be viewed as temporal phenotypes and indicative of the plant’s growth pattern and vigor. In this paper, we introduce a novel method called FlowerPhenoNet, which uses deep neural networks for detecting flowers from multiview image sequences for high-throughput temporal plant phenotyping analysis. Following flower detection, a set of novel flower-based phenotypes are computed, e.g., the day of emergence of the first flower in a plant’s life cycle, the total number of flowers present in the plant at a given time, the highest number of flowers bloomed in the plant, growth trajectory of a flower, and the blooming trajectory of a plant. To develop a new algorithm and facilitate performance evaluation based on experimental analysis, a benchmark dataset is indispensable. Thus, we introduce a benchmark dataset called FlowerPheno, which comprises image sequences of three flowering plant species, e.g., sunflower, coleus, and canna, captured by a visible light camera in a high-throughput plant phenotyping platform from multiple view angles. The experimental analyses on the FlowerPheno dataset demonstrate the efficacy of the FlowerPhenoNet.
A phenotype is the composite of an observable expression of a genome for traits in a given environment. The trajectories of phenotypes computed from an image sequence and timing of important events in a plant’s life cycle can be viewed as temporal phenotypes and indicative of the plant’s growth pattern and vigor. In this paper, we introduce a novel method called FlowerPhenoNet which uses deep neural networks for detecting flowers from multiview image sequences for high throughput temporal plant phenotyping analysis. Following flower detection, a set of novel flower-based phenotypes are computed, e.g., the day of emergence of the first flower in a plant’s life cycle, the total number of flowers present in the plant at a given time, the highest number of flowers bloomed in the plant, growth trajectory of a flower and the blooming trajectory of a plant. To develop a new algorithm and facilitate performance evaluation based on experimental analysis, a benchmark dataset is indispensable. Thus, we introduce a benchmark dataset called FlowerPheno which comprises image sequences of three flowering plant species, e.g., sunflower, coleus, and canna, captured by a visible light camera in a high throughput plant phenotyping platform from multiple view angles. The experimental analyses on the FlowerPheno dataset demonstrate the efficacy of the FlowerPhenoNet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.