Background Sepsis costs and incidence vary dramatically across diagnostic categories, warranting a customized approach for implementing predictive models. Objective The aim of this study was to optimize the parameters of a sepsis prediction model within distinct patient groups to minimize the excess cost of sepsis care and analyze the potential effect of factors contributing to end-user response to sepsis alerts on overall model utility. Methods We calculated the excess costs of sepsis to the Centers for Medicare and Medicaid Services (CMS) by comparing patients with and without a secondary sepsis diagnosis but with the same primary diagnosis and baseline comorbidities. We optimized the parameters of a sepsis prediction algorithm across different diagnostic categories to minimize these excess costs. At the optima, we evaluated diagnostic odds ratios and analyzed the impact of compliance factors such as noncompliance, treatment efficacy, and tolerance for false alarms on the net benefit of triggering sepsis alerts. Results Compliance factors significantly contributed to the net benefit of triggering a sepsis alert. However, a customized deployment policy can achieve a significantly higher diagnostic odds ratio and reduced costs of sepsis care. Implementing our optimization routine with powerful predictive models could result in US $4.6 billion in excess cost savings for CMS. Conclusions We designed a framework for customizing sepsis alert protocols within different diagnostic categories to minimize excess costs and analyzed model performance as a function of false alarm tolerance and compliance with model recommendations. We provide a framework that CMS policymakers could use to recommend minimum adherence rates to the early recognition and appropriate care of sepsis that is sensitive to hospital department-level incidence rates and national excess costs. Customizing the implementation of clinical predictive models by accounting for various behavioral and economic factors may improve the practical benefit of predictive models.
Predictive models have been suggested as potential tools for identifying highest risk patients for hospital readmissions, in order to improve care coordination and ultimately long-term patient outcomes. However, the accuracy of current predictive models for readmission prediction is still moderate and further data enrichment is needed to identify at risk patients. This paper describes models to predict 90-day readmission, focusing on testing the predictive performance of wearable sensor features generated using multiscale entropy techniques and clinical features. Our study explores ways to incorporate pre-discharge and post-discharge wearable sensor features to make robust patient predictions. Data were used from participants enrolled in the AllofUs Research program. We extracted the inpatient cohort of patients and integrated clinical data from the electronic health records (EHR) and Fitbit sensor measurements. Entropy features were calculated from the longitudinal wearable sensor data, such as heart rate and mobility-related measurements, in order to characterize time series variability and complexity. Our best performing model achieved an AUC of 83%, and at 80% sensitivity achieved 75% specificity and 57% positive predictive value. Our results indicate that it would be possible to improve the ability to predict unplanned hospital readmissions by considering pre-discharge and post-discharge wearable features.
Background Recent attempts at clinical phenotyping for sepsis have shown promise in identifying groups of patients with distinct treatment responses. Nonetheless, the replicability and actionability of these phenotypes remain an issue because the patient trajectory is a function of both the patient’s physiological state and the interventions they receive. Objective We aimed to develop a novel approach for deriving clinical phenotypes using unsupervised learning and transition modeling. Methods Forty commonly used clinical variables from the electronic health record were used as inputs to a feed-forward neural network trained to predict the onset of sepsis. Using spectral clustering on the representations from this network, we derived and validated consistent phenotypes across a diverse cohort of patients with sepsis. We modeled phenotype dynamics as a Markov decision process with transitions as a function of the patient’s current state and the interventions they received. Results Four consistent and distinct phenotypes were derived from over 11,500 adult patients who were admitted from the University of California, San Diego emergency department (ED) with sepsis between January 1, 2016, and January 31, 2020. Over 2000 adult patients admitted from the University of California, Irvine ED with sepsis between November 4, 2017, and August 4, 2022, were involved in the external validation. We demonstrate that sepsis phenotypes are not static and evolve in response to physiological factors and based on interventions. We show that roughly 45% of patients change phenotype membership within the first 6 hours of ED arrival. We observed consistent trends in patient dynamics as a function of interventions including early administration of antibiotics. Conclusions We derived and describe 4 sepsis phenotypes present within 6 hours of triage in the ED. We observe that the administration of a 30 mL/kg fluid bolus may be associated with worse outcomes in certain phenotypes, whereas prompt antimicrobial therapy is associated with improved outcomes.
ObjectiveTo optimize the parameters of a sepsis prediction model within distinct patient groups to minimize the excess cost of sepsis care and analyze the potential effect of factors contributing to end-user response to sepsis alerts on overall model utility.Materials and MethodsWe calculated the excess costs of sepsis by comparing patients with and without a secondary sepsis diagnosis but with the same primary diagnosis and baseline comorbidities. We optimized the parameters of a sepsis prediction algorithm across different diagnostic categories to minimize these excess costs. At the optima, we evaluated diagnostic odds ratios and analyzed the impact of compliance factors—like non-compliance, treatment efficacy, and tolerance for false alarms—on the net benefit of triggering sepsis alerts.ResultsCompliance factors significantly contributed to the net benefit of triggering a sepsis alert. However, a customized deployment policy can achieve a significantly higher diagnostic odds ratio and reduced costs of sepsis care. Implementing our optimization routine with powerful predictive models could result in $4.6 billion in excess cost savings for the Medicare program.DiscussionSepsis costs and incidence vary dramatically across diagnostic categories, warranting a customized approach for implementing predictive models. We designed a framework for customizing sepsis alert protocols within different diagnostic categories to minimize excess costs and analyzed model performance as a function of false alarm tolerance and compliance with model recommendations.ConclusionCustomizing the implementation of clinical predictive models by accounting for various behavioral and economic factors may improve the practical benefit of predictive models.
BACKGROUND Recent advancements in machine learning (ML) and the proliferation of healthcare data have led to widespread excitement about using these technologies to improve care. Predictive analytic models in domains such as sepsis, acute kidney injury, respiratory failure, and general deterioration have been proposed to improve the timely administration of life-saving treatments and mitigate expensive downstream complications. It has been argued that a more tailored approach that accounts for implementation constraints that may differ across care settings can further enhance the adoption of such systems. OBJECTIVE To optimize the parameters of a sepsis prediction model within distinct patient groups to minimize the excess cost of sepsis care and analyze the potential effect of factors contributing to end-user response to sepsis alerts on overall model utility. METHODS We calculated the excess costs of sepsis to the Center for Medicare and Medicaid Services (CMS) by comparing patients with and without a secondary sepsis diagnosis but with the same primary diagnosis and baseline comorbidities. We optimized the parameters of a sepsis prediction algorithm across different diagnostic categories to minimize these excess costs. At the optima, we evaluated diagnostic odds ratios and analyzed the impact of compliance factors—like non-compliance, treatment efficacy, and tolerance for false alarms—on the net benefit of triggering sepsis alerts. RESULTS Compliance factors significantly contributed to the net benefit of triggering a sepsis alert. However, a customized deployment policy can achieve a significantly higher diagnostic odds ratio and reduced costs of sepsis care. Implementing our optimization routine with powerful predictive models could result in $4.6 billion in excess cost savings for CMS. CONCLUSIONS We provide a framework that CMS policymakers could use to recommend minimum adherence rates to the early recognition and appropriate care of sepsis that is sensitive to hospital department-level incidence rates and national excess costs. Customizing the implementation of clinical predictive models by accounting for various behavioral and economic factors may improve the practical benefit of predictive models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.