MicroRNA.org (http://www.microrna.org) is a comprehensive resource of microRNA target predictions and expression profiles. Target predictions are based on a development of the miRanda algorithm which incorporates current biological knowledge on target rules and on the use of an up-to-date compendium of mammalian microRNAs. MicroRNA expression profiles are derived from a comprehensive sequencing project of a large set of mammalian tissues and cell lines of normal and disease origin. Using an improved graphical interface, a user can explore (i) the set of genes that are potentially regulated by a particular microRNA, (ii) the implied cooperativity of multiple microRNAs on a particular mRNA and (iii) microRNA expression profiles in various tissues. To facilitate future updates and development, the microRNA.org database structure and software architecture is flexibly designed to incorporate new expression and target discoveries. The web resource provides users with functional information about the growing number of microRNAs and their interaction with target genes in many species and facilitates novel discoveries in microRNA gene regulation.
A B S T R A C T PurposeIn clinical trials, traditional monitoring methods, paper documentation, and outdated collection systems lead to inaccuracies of study information and inefficiencies in the process. Integrated electronic systems offer an opportunity to collect data in real time. Patients and MethodsWe created a computer software system to collect 13 patient-reported symptomatic adverse events and patient-reported Karnofsky performance status, semi-automated RECIST measurements, and laboratory data, and we made this information available to investigators in real time at the point of care during a phase II lung cancer trial. We assessed data completeness within 48 hours of each visit. Clinician satisfaction was measured. ResultsForty-four patients were enrolled, for 721 total visits. At each visit, patient-reported outcomes (PROs) reflecting toxicity and disease-related symptoms were completed using a dedicated wireless laptop. All PROs were distributed in batch throughout the system within 24 hours of the visit, and abnormal laboratory data were available for review within a median of 6 hours from the time of sample collection. Manual attribution of laboratory toxicities took a median of 1 day from the time they were accessible online. Semi-automated RECIST measurements were available to clinicians online within a median of 2 days from the time of imaging. All clinicians and 88% of data managers felt there was greater accuracy using this system. ConclusionExisting data management systems can be harnessed to enable real-time collection and review of clinical information during trials. This approach facilitates reporting of information closer to the time of events, and improves efficiency, and the ability to make earlier clinical decisions.
The secreted proteins from a cell constitute a natural biologic library that can offer significant insight into human health and disease. Discovering new secreted proteins from cells is bounded by the limitations of traditional separation and detection tools to physically fractionate and analyze samples. Here, we present a new method to systematically identify bioactive cell-secreted proteins that circumvent traditional proteomic methods by first enriching for protein candidates by differential gene expression profiling. The bone marrow stromal cell secretome was analyzed using enriched gene expression datasets in combination with potency assay testing. Four proteins expressed by stromal cells with previously unknown anti-inflammatory properties were identified, two of which provided a significant survival benefit to mice challenged with lethal endotoxic shock. Greater than 85% of secreted factors were recaptured that were otherwise undetected by proteomic methods, and remarkable hit rates of 18% in vitro and 9% in vivo were achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.