Intra-lesional chemotherapy for treatment of cutaneous malignancies has been used for many decades, allowing higher local drug concentrations and less toxicity than systemic agents. Here we describe a novel diterpene ester, EBC-46, and provide preclinical data supporting its use as an intra-lesional treatment. A single injection of EBC-46 caused rapid inflammation and influx of blood, followed by eschar formation and rapid tumor ablation in a range of syngeneic and xenograft models. EBC-46 induced oxidative burst from purified human polymorphonuclear cells, which was prevented by the Protein Kinase C inhibitor bisindolylmaleimide-1. EBC-46 activated a more specific subset of PKC isoforms (PKC-βI, -βII, -α and -γ) compared to the structurally related phorbol 12-myristate 13-acetate (PMA). Although EBC-46 showed threefold less potency for inhibiting cell growth than PMA in vitro, it was more effective for cure of tumors in vivo. No viable tumor cells were evident four hours after injection by ex vivo culture. Pharmacokinetic profiles from treated mice indicated that EBC-46 was retained preferentially within the tumor, and resulted in significantly greater local responses (erythema, oedema) following intra-lesional injection compared with injection into normal skin. The efficacy of EBC-46 was reduced by co-injection with bisindolylmaleimide-1. Loss of vascular integrity following treatment was demonstrated by an increased permeability of endothelial cell monolayers in vitro and by CD31 immunostaining of treated tumors in vivo. Our results demonstrate that a single intra-lesional injection of EBC-46 causes PKC-dependent hemorrhagic necrosis, rapid tumor cell death and ultimate cure of solid tumors in pre-clinical models of cancer.
Garlic mustard's (Alliaria petiolata, Brassicaceae) invasive success is attributed in part to its release of allyl isothiocyanate (AITC) into the soil. AITC can disrupt beneficial arbuscular mycorrhizal fungi (AMF) associated with native plant roots, which limits their soil resource uptake. However, AITC and its precursor, sinigrin, have never been detected in garlic mustard-invaded forest soils. Here, we use high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) to assess the concentration and bioactivity of these putative allelochemicals in paired forest plots uninvaded or invaded by garlic mustard. Our methods detected AITC and sinigrin only where garlic mustard was present and our recovery of AITC/sinigrin coincided with adult senescence. A bioassay of in situ fungal hyphae abundance revealed significantly reduced hyphal abundance in the presence of garlic mustard relative to uninvaded soils. Finally, the lowest concentration of AITC measured in the field (*0.001 mM) is highly inhibitory to the spore germination of a forest AMF species, Glomus clarum. Together, our data provide the first direct evidence of garlic mustard-produced sinigrin and AITC in forest soils and demonstrate that even low levels of these chemicals have the potential to significantly suppress AMF growth and spore germination, strengthening their status as allelopathic novel weapons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.