Broadband UV-visible femtosecond transient absorption spectroscopy and steady-state integrated fluorescence were used to study the excited state dynamics of 7-dehydrocholesterol (provitamin D(3), DHC) in solution following excitation at 266 nm. The major results from these experiments are: (1) The excited state absorption spectrum is broad and structureless spanning the visible from 400 to 800 nm. (2) The state responsible for the excited state absorption is the initially excited state. Fluorescence from this state has a quantum yield of ∼2.5 × 10(-4) in room temperature solution. (3) The decay of the excited state absorption is biexponential, with a fast component of ∼0.4-0.65 ps and a slow component 1.0-1.8 ps depending on the solvent. The spectral profiles of the two components are similar, with the fast component redshifted with respect to the slow component. The relative amplitudes of the fast and slow components are influenced by the solvent. These data are discussed in the context of sequential and parallel models for the excited state internal conversion from the optically excited 1(1)B state. Although both models are possible, the more likely explanation is fast bifurcation between two excited state geometries leading to parallel decay channels. The relative yield of each conformation is dependent on details of the potential energy surface. Models for the temperature dependence of the excited state decay yield an intrinsic activation barrier of ∼2 kJ/mol for internal conversion and ring opening. This model for the excited state behavior of DHC suggests new experiments to further understand the photochemistry and perhaps control the excited state pathways with optical pulse shaping.
Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron tetraphenyl porphyrin chloride (Fe((III))TPPCl) exhibits picosecond decay to a metal centered d → d* (4)T state. This state decays on a ca. 16 ps time scale in room temperature solution but persists for much longer in a cryogenic glass. The photoreactivity of the (4)T state may lead to novel future applications for these compounds. In contrast, the nonplanar cob(III)alamins contain two axial ligands to the central cobalt atom. The upper axial ligand can be an alkyl group as in the two biologically active coenzymes or a nonalkyl ligand such as -CN in cyanocobalamin (vitamin B12) or -OH in hydroxocobalamin. The electronic structure, energy cascade, and bond cleavage of these compounds is sensitive to the details of the axial ligand. Nonalkylcobalamins exhibit ultrafast internal conversion to a low-lying state of metal to ligand or ligand to metal charge transfer character. The compounds are generally photostable with ground state recovery complete on a time scale of 2-7 ps in room temperature aqueous solution. Alkylcobalamins exhibit ultrafast internal convers...
Time-resolved transient absorption spectroscopy was used to investigate the primary geminate recombination and cage escape of alkyl radicals in solution over a temperature range from 0 to 80 degrees C. Radical pairs were produced by photoexcitation of methyl, ethyl, propyl, hexylnitrile, and adenosylcobalamin in water, ethylene glycol, mixtures of water and ethylene glycol, and sucrose solutions. In contrast to previous studies of cage escape and geminate recombination, these experiments demonstrate that cage escape for these radical pairs occurs on time scales ranging from a hundred picoseconds to over a nanosecond as a function of solvent fluidity and radical size. Ultrafast cage escape (<100 ps) is only observed for the methyl radical where the radical pair is produced through excitation to a directly dissociative electronic state. The data are interpreted using a unimolecular model with competition between geminate recombination and cage escape. The escape rate constant, k(e), is not a simple function of the solvent fluidity (T/eta) but depends on the nature of the solvent as well. The slope of k(e) as a function of T/eta for the adenosyl radical in water is in near quantitative agreement with the slope calculated using a hydrodynamic model and the Stokes-Einstein equation for the diffusion coefficients. The solvent dependence is reproduced when diffusion constants are calculated taking into account the relative volume and mass of both solvent and solute using the expression proposed by Akgerman (Akgerman, A.; Gainer, J. L. Ind. Eng. Chem. Fundam. 1972, 11, 373-379). Rate constants for cage escape of the other radicals investigated are consistently smaller than the calculated values suggesting a systematic correction for radical size or coupled radical pair motion.
The coupling of electron and lattice phonon motion plays a fundamental role in the properties of functional organic charge-transfer materials. In this Letter we extend the use of ultrafast vibrational quantum beat spectroscopy to directly elucidate electron-phonon coupling in an organic charge-transfer material. As a case study, we compare the oscillatory components of the transient reflection (TR) of a broadband probe pulse from single crystals of quinhydrone, a 1:1 cocrystal of hydroquinone and p-benzoquinone, after exciting nonresonant impulsive stimulated Raman scattering and resonant electronic transitions using ultrafast pulses. Spontaneous resonance Raman spectra confirm the assignment of these oscillations as coherent lattice phonon excitations. Fourier transforms of the vibrational quantum beats in our broadband TR measurements allow construction of spectra that we show report the ability of these phonons to directly modulate the electronic structure of quinhydrone. These results demonstrate how coherent ultrafast processes can characterize the complex interplay of charge transfer and lattice motion in materials of fundamental relevance to chemistry, materials sciences, and condensed matter physics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.