ZrSiS-type materials represent a large material family with unusual coexistence of topological nonsymmorphic Dirac fermions and nodal-line fermions. As a special group of ZrSiS-family, LnSbTe (Ln = Lanthanide rare earth) compounds provide a unique opportunity to explore new quantum phases due to the intrinsic magnetism induced by Ln. Here we report the single crystal growth and characterization of NdSbTe, a previously unexplored LnSbTe compound. NdSbTe has an antiferromagnetic ground state with field-driven metamagnetic transitions similar to other known LnSbTe, but exhibits distinct enhanced electronic correlations characterized by large a Sommerfeld coefficient of 115 mJ/mol K 2 , which is the highest among
Since the discovery of Weyl semimetals (WSMs) 1,2 , there have been significant efforts to pursue ideal WSMs with all the Weyl nodes being symmetry related and not interfered with by any other bands. Although ideal WSM states have been realized in bosonic systems (i.e., photonic crystals 3 ), ideal fermionic WSMs are still lacking. In this Letter, we report transport evidence for a magnetic-field-induced ideal type-II Weyl state in the intrinsic antiferromagnetic topological insulator Mn(Bi,Sb)2Te4 4,5 . At an optimal sample composition, we minimize the carrier density, thus lowering the chemical potential and realizing the
The ZrSiS family of compounds hosts various exotic quantum phenomena due to the presence of both topological nonsymmorphic Dirac fermions and nodal‐line fermions. In this material family, the LnSbTe (Ln = lanthanide) compounds are particularly interesting owing to the intrinsic magnetism from magnetic Ln which leads to new properties and quantum states. In this work, the authors focus on the previously unexplored compound SmSbTe. The studies reveal a rare combination of a few functional properties in this material, including antiferromagnetism with possible magnetic frustration, electron correlation enhancement, and Dirac nodal‐line fermions. These properties enable SmSbTe as a unique platform to explore exotic quantum phenomena and advanced functionalities arising from the interplay between magnetism, topology, and electronic correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.