The novel coronavirus disease or COVID-19 is still posing an alarming situation around the globe. The whole world is facing the second wave of this novel pandemic. Recently, the researchers are focused to study the complex dynamics and possible control of this global infection. Mathematical modeling is a useful tool and gains much interest in this regard. In this paper, a fractional-order transmission model is considered to study its dynamical behavior using the real cases reported in Saudia Arabia. The classical Caputo type derivative of fractional order is used in order to formulate the model. The transmission of the infection through the environment is taken into consideration. The documented data since March 02, 2020 up to July 31, 2020 are considered for estimation of parameters of system. We have the estimated basic reproduction number
for the data is
. The Banach fixed point analysis has been used for the existence and uniqueness of the solution. The stability analysis at infection free equilibrium and at the endemic state are presented in details via a nonlinear Lyapunov function in conjunction with LaSalle Invariance Principle. An efficient numerical scheme of Adams-Molten type is implemented for the iterative solution of the model, which plays an important role in determining the impact of control measures and also sensitive parameters that can reduce the infection in the general public and thereby reduce the spread of pandemic as shown graphically. We present some graphical results for the model and the effect of the important sensitive parameters for possible infection minimization in the population.
Ethylene glycol is commonly used as a cooling agent in the engine, therefore the study associated with EG has great importance in engineering and mechanical fields. The hybrid nanofluid has been synthesized by adding copper and graphene nanoparticles into the Ethylene glycol, which obeys the power-law rheological model and exhibits shear rate-dependent viscosity. As a result of these features, the power-law model is utilized in conjunction with thermophysical characteristics and basic rules of heat transport in the fluid to simulate the physical situations under consideration. The Darcy Forchhemier hybrid nanofluid flow has been studied under the influence of heat source and magnetic field over a two-dimensionally stretchable moving permeable surface. The phenomena are characterized as a nonlinear system of PDEs. Using resemblance replacement, the modeled equations are simplified to a nondimensional set of ODEs. The Parametric Continuation Method has been used to simulate the resulting sets of nonlinear differential equations. Figures and tables depict the effects of physical constraints on energy, velocity and concentration profiles. It has been noted that the dispersion of copper and graphene nanoparticulate to the base fluid ethylene glycol significantly improves velocity and heat conduction rate over a stretching surface.
COVID-19 or coronavirus is a newly emerged infectious disease that started in Wuhan, China, in December 2019 and spread worldwide very quickly. Although the recovery rate is greater than the death rate, the COVID-19 infection is becoming very harmful for the human community and causing financial loses to their economy. No proper vaccine for this infection has been introduced in the market in order to treat the infected people. Various approaches have been implemented recently to study the dynamics of this novel infection. Mathematical models are one of the effective tools in this regard to understand the transmission patterns of COVID-19. In the present paper, we formulate a fractional epidemic model in the Caputo sense with the consideration of quarantine, isolation, and environmental impacts to examine the dynamics of the COVID-19 outbreak. The fractional models are quite useful for understanding better the disease epidemics as well as capture the memory and nonlocality effects. First, we construct the model in ordinary differential equations and further consider the Caputo operator to formulate its fractional derivative. We present some of the necessary mathematical analysis for the fractional model. Furthermore, the model is fitted to the reported cases in Pakistan, one of the epicenters of COVID-19 in Asia. The estimated value of the important threshold parameter of the model, known as the basic reproduction number, is evaluated theoretically and numerically. Based on the real fitted parameters, we obtained $\mathcal{R}_{0} \approx 1.50$
R
0
≈
1.50
. Finally, an efficient numerical scheme of Adams–Moulton type is used in order to simulate the fractional model. The impact of some of the key model parameters on the disease dynamics and its elimination are shown graphically for various values of noninteger order of the Caputo derivative. We conclude that the use of fractional epidemic model provides a better understanding and biologically more insights about the disease dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.