Evidence from several lines of research suggests decreased dopamine release in the prefrontal cortex as the neurochemical correlates of cognitive deficits in schizophrenia (SCZ). However, in vivo examination of cortical hypodopaminergia using positron emission tomography (PET) during cognitive task performance in SCZ remains to be investigated. We examined dopamine release in anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC), using PET while participants were performing a cognitive task. Thirteen drug-free patients with SCZ and 13 healthy volunteers (HV) matched for age and sex participated in the study. Data were acquired between 2011 and 2015. Two PET scans with [11C]FLB 457 were acquired while the participants were performing the Wisconsin Card Sorting Test (WCST) and a sensorimotor control task (SMCT). A magnetic resonance image was acquired for anatomical delineation. Differences in cortical dopamine release between SCZ and HV, indexed as percentage change in binding potential between WCST and SMCT (ΔBPND), were calculated in ACC and DLPFC. We observed significant differences in the ΔBPND in ACC (HV = 4.40 ± 6.00; SCZ = -11.48 ± 15.08; t = 3.52; P = .003) and a trend-level difference in ΔBPND in DLPFC (HV = -0.58 ± 8.45; SCZ = -7.79 ± 11.28; t = 1.84; P = .079), suggesting dopamine depletion in cortical brain regions in patients with SCZ while performing a cognitive task. These results provide the first in vivo evidence for reduced dopamine release or even dopamine depletion while performing cognitive task in ACC and DLPFC in patients with SCZ. The present results provide support for the frontal hypodopaminergia hypothesis of cognitive symptoms in SCZ.
While alterations in striatal dopamine in psychosis and stress have been well studied, the role of dopamine in prefrontal cortex is poorly understood. To date, no study has investigated the prefrontocortical dopamine response to stress in the psychosis spectrum, even though the dorsolateral and medial prefrontal cortices are key regions in cognitive and emotional regulation, respectively. The present study uses the high-affinity dopamine D2/3 receptor radiotracer 11C-FLB457 and PET together with a validated psychosocial stress challenge to investigate the dorsolateral and medial prefrontocortical dopamine response to stress in schizophrenia and clinical high risk for psychosis. Forty participants completed two 11C-FLB457 PET scans (14 antipsychotic-free schizophrenia, 14 clinical high risk for psychosis and 12 matched healthy volunteers), one while performing a Sensory Motor Control Task (control) and another while performing the Montreal Imaging Stress Task (stress). Binding potential (BPND) was estimated using Simplified Reference Tissue Model with cerebellar cortex as reference region. Dopamine release was defined as per cent change in BPND between control and stress scans (ΔBPND) using a novel correction for injected mass. Salivary cortisol response (ΔAUCI) was assessed throughout the tasks and its relationship with dopamine release examined. 11C-FLB457 binding at control conditions was significantly different between groups in medial [F(2,37) = 7.98, P = 0.0013] and dorsolateral [F(2,37) = 6.97, P = 0.0027] prefrontal cortex with schizophrenia patients having lower BPND than participants at clinical high risk for psychosis and healthy volunteers, but there was no difference in ΔBPND among groups [dorsolateral prefrontal cortex: F(2,37) = 1.07, P = 0.35; medial prefrontal cortex: F(2,37) = 0.54, P = 0.59]. We report a positive relationship between ΔAUCI and 11C-FLB457 ΔBPND in dorsolateral and medial prefrontal cortex in healthy volunteers (r = 0.72, P = 0.026; r = 0.76, P = 0.014, respectively) and in participants at clinical high risk for psychosis (r = 0.76, P = 0.0075; r = 0.72, P = 0.018, respectively), which was absent in schizophrenia (r = 0.46, P = 1.00; r = 0.19, P = 1.00, respectively). Furthermore, exploratory associations between ΔBPND or ΔAUCI and stress or anxiety measures observed in clinical high risk for psychosis were absent in schizophrenia. These findings provide first direct evidence of a disrupted prefrontocortical dopamine-stress regulation in schizophrenia.
Stress and cannabis use are risk factors for the development of psychosis. We have previously shown that subjects at clinical high risk for psychosis (CHR) exhibit a higher striatal dopamine response to stress compared with healthy volunteers (HV), with chronic cannabis use blunting this response. However, it is unknown if this abnormal dopamine response extends to the prefrontal cortex (PFC). Here, we investigated dorsolateral PFC (dlPFC) and medial PFC (mPFC) dopamine release using [11C]FLB457 positron emission tomography (PET) and a validated stress task. Thirty‐three participants completed two PET scans (14 CHR without cannabis use, eight CHR regular cannabis users [CHR‐CUs] and 11 HV) while performing a Sensory Motor Control Task (control scan) and the Montreal Imaging Stress Task (stress scan). Stress‐induced dopamine release (ΔBPND) was defined as percent change in D2/3 receptor binding potential between both scans using a novel correction for injected mass of [11C]FLB457. ΔBPND was significantly different between groups in mPFC (F(2,30) = 5.40, .010), with CHR‐CUs exhibiting lower ΔBPND compared with CHR (.008). Similarly, salivary cortisol response (ΔAUCI) was significantly lower in CHR‐CU compared with CHR (F(2,29) = 5.08, .013; post hoc .018) and positively associated with ΔBPND. Furthermore, CHR‐CUs had higher attenuated psychotic symptoms than CHR following the stress task, which were negatively associated with ΔBPND. Length of cannabis use was negatively associated with ΔBPND in mPFC when controlling for current cannabis use. Given the global trend to legalize cannabis, this study is important as it highlights the effects of regular cannabis use on cortical dopamine function in high‐risk youth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.