Neuroinflammation and abnormal immune responses have been implicated in schizophrenia (SCZ). Past studies using positron emission tomography (PET) that examined neuroinflammation in patients with SCZ in vivo using the translocator protein 18kDa (TSPO) target were limited by the insensitivity of the first-generation imaging agent [(11)C]-PK11195, scanners used, and the small sample sizes studied. Present study uses a novel second-generation TSPO PET radioligand N-acetyl-N-(2-[(18)F]fluoroethoxybenzyl)-2-phenoxy-5-pyridinamine ([(18)F]-FEPPA) to evaluate whether there is increased neuroinflammation in patients with SCZ. A cross-sectional study was performed using [(18)F]-FEPPA and a high-resolution research tomograph (HRRT). Eighteen patients with SCZ with ongoing psychotic symptoms and 27 healthy volunteers (HV) were recruited from a tertiary psychiatric clinical setting and the community, respectively. All participants underwent [(18)F]-FEPPA PET and magnetic resonance imaging, and PET data were analyzed to obtain [(18)F]-FEPPA total volume of distribution (VT) using a 2-tissue compartment model with an arterial plasma input function, as previously validated. All subjects were classified as high-, medium- or low-affinity [(18)F]-FEPPA binders on the basis of rs6971 polymorphism, and genotype information was incorporated into the analyses of imaging outcomes. No significant differences in neuroinflammation indexed as [(18)F]-FEPPA VT were observed between groups in either gray (F(1,39) = 0.179, P = .674) or white matter regions (F(1,38) = 0.597, P = .445). The lack of significant difference in neuroinflammation in treated patients with SCZ in the midst of a psychotic episode and HV suggests that neuroinflammatory processes may take place early in disease progression or are affected by antipsychotic treatment.
Objective Neuroinflammation and abnormal immune responses are increasingly implicated in the pathophysiology of schizophrenia. Previous positron emission tomography (PET) studies targeting the translocator protein 18 kDa (TSPO) have been limited by high nonspecific binding of the first-generation radioligand, low-resolution scanners, small sample sizes, and psychotic patients being on antipsychotics or not being in the first episode of their illness. The present study uses the novel second-generation TSPO PET radioligand [18F]FEPPA to evaluate whether microglial activation is elevated in the dorsolateral prefrontal cortex and hippocampus of untreated patients with first-episode psychosis. Method Nineteen untreated patients with first-episode psychosis (14 of them antipsychotic naive) and 20 healthy volunteers underwent a high-resolution [18F]FEPPA PET scan and MRI. Dynamic PET data were analyzed using the validated two-tissue compartment model with arterial plasma input function with total volume of distribution (VT) as outcome measure. All analyses were corrected for TSPO rs6971 polymorphism (which is implicated in differential binding affinity). Results No significant differences were observed between patients and healthy volunteers in microglial activation, as indexed by [18F]FEPPA VT, in either the dorsolateral prefrontal cortex or the hippocampus. There were no significant correlations between [18F]FEPPA VT and duration of illness, clinical presentation, or neuropsychological measures after adjusting for multiple testing. Conclusions The lack of significant differences in [18F]FEPPA VT between groups suggests that microglial activation is not present in first-episode psychosis.
Research on the environmental risk factors for schizophrenia has focused on either psychosocial stress or drug exposure, with limited investigation of their interaction. A heightened dopaminergic stress response in patients with schizophrenia and individuals at clinical high risk (CHR) supports the dopaminergic sensitization hypothesis. Cannabis is believed to contribute to the development of schizophrenia, possibly through a cross-sensitization with stress. Twelve CHR and 12 cannabis-using CHR (CHR-CU, 11 dependent) subjects underwent [(11)C]-(+)-PHNO positron emission tomography scans, while performing a Sensorimotor Control Task (SMCT) and a stress condition (Montreal Imaging Stress task). The simplified reference tissue model was used to obtain binding potential relative to non-displaceable binding (BPND) in the whole striatum, its functional subdivisions (limbic striatum (LST), associative striatum (AST), and sensorimotor striatum (SMST)), globus pallidus (GP), and substantia nigra (SN). Changes in BPND, reflecting alterations in synaptic dopamine (DA) levels, were tested with analysis of variance. SMCT BPND was not significantly different between groups in any brain region (p>0.21). Although stress elicited a significant reduction in BPND in the CHR group, CHR-CU group exhibited an increase in BPND. Stress-induced changes in regional BPND between CHR-CU and CHR were significantly different in AST (p<0.001), LST (p=0.007), SMST (p=0.002), SN (p=0.021), and whole striatum (p=0.001), with trend level in the GP (p=0.099). All subjects experienced an increase in positive (attenuated) psychotic symptoms (p=0.001) following the stress task. Our results suggest altered DA stress reactivity in CHR subjects who concurrently use cannabis, as compared with CHR subjects. Our finding does not support the cross-sensitization hypothesis, which posits greater dopaminergic reactivity to stress in CHR cannabis users, but adds to the growing body of literature showing reduced DA (stress) response in addiction.
Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case–control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capacity) in immigrants compared to nonimmigrants were performed in Canada and the United Kingdom. The Canadian dopamine release study included 25 immigrant and 31 nonmigrant Canadians. These groups included 23 clinical high risk (CHR) subjects, 9 antipsychotic naïve patients with schizophrenia, and 24 healthy volunteers. The UK dopamine synthesis study included 32 immigrants and 44 nonimmigrant British. These groups included 50 CHR subjects and 26 healthy volunteers. Both striatal stress-induced dopamine release and dopamine synthesis capacity were significantly elevated in immigrants compared to nonimmigrants, independent of clinical status. These data provide the first evidence that the effect of migration on the risk of developing psychosis may be mediated by an elevation in brain dopamine function.
Evidence from several lines of research suggests decreased dopamine release in the prefrontal cortex as the neurochemical correlates of cognitive deficits in schizophrenia (SCZ). However, in vivo examination of cortical hypodopaminergia using positron emission tomography (PET) during cognitive task performance in SCZ remains to be investigated. We examined dopamine release in anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC), using PET while participants were performing a cognitive task. Thirteen drug-free patients with SCZ and 13 healthy volunteers (HV) matched for age and sex participated in the study. Data were acquired between 2011 and 2015. Two PET scans with [11C]FLB 457 were acquired while the participants were performing the Wisconsin Card Sorting Test (WCST) and a sensorimotor control task (SMCT). A magnetic resonance image was acquired for anatomical delineation. Differences in cortical dopamine release between SCZ and HV, indexed as percentage change in binding potential between WCST and SMCT (ΔBPND), were calculated in ACC and DLPFC. We observed significant differences in the ΔBPND in ACC (HV = 4.40 ± 6.00; SCZ = -11.48 ± 15.08; t = 3.52; P = .003) and a trend-level difference in ΔBPND in DLPFC (HV = -0.58 ± 8.45; SCZ = -7.79 ± 11.28; t = 1.84; P = .079), suggesting dopamine depletion in cortical brain regions in patients with SCZ while performing a cognitive task. These results provide the first in vivo evidence for reduced dopamine release or even dopamine depletion while performing cognitive task in ACC and DLPFC in patients with SCZ. The present results provide support for the frontal hypodopaminergia hypothesis of cognitive symptoms in SCZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.