The main purpose of the present work was studying the biodistribution of amikacin solid lipid nanoparticles (SLNs) after pulmonary delivery to increase its concentration in the lungs for treatment of cystic fibrosis lung infections and also providing a new method for clinical application of amikacin. To achieve this aim, 99mTc labelled amikacin was loaded in cholesterol SLNs and after in vitro optimization, the desired SLNs and free drug were administered through pulmonary and i.v. routes to male rats and qualitative and biodistribution studies were done. Results showed that pulmonary delivery of SLNs of amikacin by microsprayer caused higher drug concentration in lungs than kidneys while i.v. administration of free drug caused reverse conditions. It seems that pulmonary delivery of SLNs may improve patients' compliance due to reduction of drug side effects in kidneys and elongation of drug dosing intervals due to the sustained drug release from SLNs.
A critical element in tissue engineering involves the fabrication of a three-dimensional scaffold. The scaffold provides a space for new tissue formation, supports cellular ingrowth, and proliferation and mimics many roles of the extracellular matrix. Poly(3-hydroxybutyrate) (PHB) is the most thoroughly investigated member of the polyhydroxyalkanoates (PHAs) family that has various degrees of biocompatibility and biodegradability for tissue engineering applications. In this study, we fabricated PHB scaffolds by utilizing electrospinning and salt-leaching procedures. The behavior of monkey epithelial kidney cells (Vero) and mouse mesenchymal stem cells (mMSCs) on these scaffolds was compared by the MTS assay and scanning electron microscopy. Additionally, this study investigated the mechanical and physical properties of these scaffolds by measuring tensile strength and modulus, dynamic contact angle and porosity. According to our results, the salt-leached scaffolds showed more wettability and permeability, but inferior mechanical properties when compared with nanofibrous scaffolds. In terms of cell response, salt-leached scaffolds showed enhanced Vero cell proliferation, whereas both scaffolds responded similarly in the case of mMSCs proliferation. In brief, nanofibrous scaffolds can be a better substrate for cell attachment and morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.