The aim of the current study is to investigate the therapeutic and preventive effects of 1alpha, 25dihydroxyvitaminD3 (1,25 (OH)2 D3) and Afuga iva (AI) extract on diabetes toxicity in rats testes. Thus diabetic rats were treated with 1alpha, 25dihydroxyvitaminD3 or Ajuga iva extract as both therapeutic and preventive treatments on diabetes toxicity in rats testes. Our results showed that diabetes induced a decrease in testosterone and 17beta-estradiol levels in testes and plasma. Besides, a fall in testicular antioxidant capacity appeared by a decrease in both antioxidant (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities) and nonenzymatic antioxidant (copper (Cu), magnesium (Mg) and iron (Fe) levels). All theses changes enhanced testicular toxicity (increase in testicular aspartate amino transaminase (AST), alanine amino transaminase (ALT), lactate dehydrogenase (LDH) activities and the lipid peroxidation and triglyceride (TG) levels). In addition, a decrease in testicular total cholesterol (TCh) level was observed in diabetic rats testes. All the changes lead to a decrease in the total number and mobility of epididymal spermatozoa. The administration of 1alpha,25dihydroxyvitaminD3 and Ajuga iva extract three weeks before and after diabetes induction interfered and prevented diabetes toxicity in the reproductive system. 1,25 (OH)2 D3 and Ajuga iva extract blunted all changes observed in diabetic rats. To sum up, the data suggested that 1,25 (OH)2 D3 and Ajuga iva extract have a protective effect on alloxan-induced damage in reproductive system by enhancing the testosterone and 17beta-estradiol levels, consequently protecting from oxidative stress, cellular toxicity and maintaining the number and motility of spermatozoids.
The objective of the article was to analyze the influence of psychrotrophic bacteria counts (PBCs) and somatic cell counts (SCCs) on the extent of lipolysis in bulk samples of cow's milk at reception and during cold storage. Samples of milk were analyzed on the day of sampling and subsequently during cold storage. The acidity, fat, density, chloride content, electrical conductivity (EC), bulk milk SCCs (BMSCC), and PBC values were analyzed on the day of sampling and the levels of acidity, EC, SCC, and PBC were analyzed during cold storage at 4 °C for 72 h. The SCC value 869 × 10(3) mL(-1) was higher than the recommended threshold. Lipolysis level at sampling day was related more closely with SCC than with PBC. There was no significant correlation between milk acidity and PBC among others parameters, while the milk mean density was only significant (P < 0.01) correlated with the fat content. The EC and chloride content were consistently correlated (P < 0.001) with BMSCC that allowed them to be used as indicators of mammary gland infection. The milk acidity, EC, PBC, and lipolysis levels increased in relation to the storage time at 4 °C. The lipolysis level during storage was in closer relation to the SCC, but not relation to the PBC. Effects of SCC and PBC on lipolysis decreased throughout the chilling period. It was concluded that initial lipolysis level and intrinsic milk lipoprotein lipase appear more effective than SCC and PBC on the development of lipolysis during storage.
The present work was aimed at studying the effects of a subchronic lithium treatment on rat liver and kidneys, paying attention to the relationship between lithium toxicity, oxidative stress, and stress protein expression. Male rats were submitted to lithium treatment by adding 2 g of lithium carbonate/kg of food for different durations up to 1 month. This treatment led to serum concentrations ranging from 0.5 mM (day 7) to 1.34 mM (day 28) and renal insufficiency highlighted by an increase of blood creatinine and urea levels and a decrease of urea excretion. Lithium treatment was found to trigger an oxidative stress both in kidney and liver, leading to an increase of lipid peroxidation level (TBARS) and of superoxide dismutase and catalase activities. Conversely, glutathione peroxidase activity was reduced. Constitutive HSP73 (heat shock protein 73) expression was not modified by lithium treatment, whereas inducible HSP72 was down-regulated in kidney. GRP94 (glucose regulated protein 94) appeared as two isoforms of 92 and 98 kDa: the 98-kDa protein being overexpressed in kidney by lithium treatment whereas 92-kDa protein was underexpressed both in kidney and liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.