The direct control of the tunneling current as a function of electric polarization in ferroelectric tunnel junctions has recently attracted noticeable attention through the availability of the CMOS compatible ferroelectric hafnium zirconium oxide (Hf0.5Zr0.5O2). While a lot of progress has been made in the understanding of ferroelectric tunnel junctions, the control and optimization of the volume fraction of the polar orthorhombic phase are still in its infancy and raise the question whether all observed resistive switching events are necessarily associated with polarization reversal. Trap-assisted tunneling is also able to modulate the current density through a field-induced variation of the oxygen vacancy density across the tunnel junction. The amplitude of the effect should depend on the pre-existing density of oxygen vacancies introduced during the fabrication. Here, by controlling the oxygen partial pressure during the RF magnetron sputtering deposition of the non-polar monoclinic phase of Hf0.5Zr0.5O2 thin films of approximately 3 nm, we demonstrate tuning of its transport mechanism due to the formation of oxygen vacancies. We show that two mechanisms dominate the current transport depending on the average distance between traps. For large oxygen content in the Hf0.5Zr0.5O2 thin film, direct tunneling (DT) is the dominant transport mechanism, while the electrical conductivity in the oxide can be described by the phonon-assisted tunneling between traps (PATTs) for the oxygen deficient Hf0.5Zr0.5O2 thin film. We derive a critical inter-trap distance and a critical thickness value that explains the transition from DT to PATT mechanism in Hf0.5Zr0.5O2 thin films.
Current quantum systems based on spin qubits are controlled by classical electronics located outside the cryostat. This approach creates a major wiring bottleneck, which is one of the main roadblocks toward scalable quantum computers. Thus, we propose a scalable memristor-based programmable dc source that can perform biasing of quantum dots (QDs) inside the cryostat. This novel cryogenic approach would enable to control the applied voltage on the electrostatic gates by program-Manuscript
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.