<span lang="EN-US">X-means and k-means are clustering algorithms proposed as a solution for prolonging wireless sensor networks (WSN) lifetime. In general, X-means overcomes k-means limitations such as predetermined number of clusters. The main concept of X-means is to create a network with basic clusters called parents and then generate (</span><em><span lang="EN-US">j</span></em><span lang="EN-US">) number of children clusters by parents splitting. X-means did not provide any criteria for splitting parent’s clusters, nor does it provide a method to determine the acceptable number of children. This article proposes fitness function X-means (FFX-means) as an enhancement of X-means; FFX-means has a new method that determines if the parent clusters are worth splitting or not based on predefined network criteria, and later on it determines the number of children. Furthermore, FFX-means proposes a new cluster-heads selection method, where the cluster-head is selected based on the remaining energy of the node and the intra-cluster distance. The simulation results show that FFX-means extend network lifetime by 11.5% over X-means and 75.34% over k-means. Furthermore, the results show that FFX-means balance the node’s energy consumption, and nearly all nodes depleted their energy within an acceptable range of simulation rounds. </span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.