This study characterizes differences in human ERGs based on ocular pigmentation. Light- and dark-adapted luminance-response (LR) series for a-, b- and i-waves and light-adapted oscillatory potentials (OPs) were recorded in 14 healthy volunteers (7 blue-eyed Caucasians; 7 brown-eyed Asians, aged 20-22 years). Amplitude interpolations were by logistic growth (Naka-Rushton), Gaussian or the combined 'photopic hill' functions. Implicit times (IT) for dark-adapted a- and b-waves, and for light-adapted a-, b- and i-waves were earlier in the blue-eyed group than in the brown-eyed group across all flash strengths (P < 0.05). For dark-adapted ERGs, saturated a-wave amplitude was larger for blue eyes (397 vs. 318 μV, P < 0.05) as was the a-wave to strong flash (10 cd·s/m(2); 357 vs. 293 μV, P < 0.05) and the b-wave to ISCEV standard 0.01 (354 vs. 238 μV, P < 0.05). Light-adapted b-waves for midrange flash stimuli were much larger for the blue-eyed group (photopic hill, Gaussian peak: 155 vs. 82 μV, P < 0.001) with no difference in saturated amplitudes. Similarly, interpolated i-wave amplitudes were larger (48 vs. 18 μV, P < 0.01). For a light-adapted 2.6 stimulus, a- and b-waves were larger for the blue-eyed group (52 vs. 39 μV; 209 vs. 133 μV, P < 0.01) as were OP4 and OP5 (37.2 vs. 15.6 μV; 47.5 vs. 22.2 μV, P < 0.01), but OP1-OP3 did not differ. ERGs have shorter ITs in people with blue irides than in those with dark pigmentation. Amplitude differences are highly non-linear and substantially larger from eyes with light pigmentation for components thought to be associated with the OFF retinal pathways.
Inter-centre amplitude variability was typically within clinically significant thresholds, suggesting that inter-centre variability with suitable standardisation may not add more to total variability than inter-subject variability. Variability improvements gained by the tighter specifications of the ISCEV-specified protocol were possibly more than lost due to imprecisions of xenon flashtubes. Peak time variability was far lower than amplitude variability, corresponding with acceptable variability of biochemical assays. These results represent a vindication of the existence of an ERG standard and suggest that further standardisation would lend itself to greater reproducibility of ERGs worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.