Cancer cells can be distinguished from normal cells by displaying aberrant levels and types of carbohydrate structures on their surfaces. These carbohydrate structures are known as tumor-associated carbohydrate antigens (TACAs). TACAs were considered as promising targets for the design of anticancer vaccines. Unfortunately, carbohydrates alone can only evoke poor immunogenicity because they are unable to induce T-cell-dependent immune responses, which is critical for cancer therapy. Moreover, immunotolerance and immunosuppression are easily induced by using natural occurring TACAs as antigens due to their endogenous property. This review summarizes the recent strategies to overcome these obstacles: (1) covalently coupling TACAs to proper carriers to improve immunogenicity, including clustered or multivalent conjugate vaccines, (2) coupling TACAs to T-cell peptide epitopes or the built-in adjuvant to form multicomponent glycoconjugate vaccines, and (3) developing vaccines based on chemically modified TACAs, which is combined with metabolic engineering of cancer cells.
Research and development of isoform selective JAK inhibitors has become a hot topic in this field. With the assistance of high throughput screening and rational drug design, more and more JAK inhibitors with improved selective profiles will be discovered as biological probes and even therapeutic agents.
Background/Aims: Histone acetylation has been demonstrated to be associated with inflammation response. Histone acetyltransferase (HAT) Mof, specifically acetylating lysine 16 of histone H4 (H4K16), has been reported to regulate T cell differentiation. In addition, it has been suggested that acetylation of H4K16 is associated with the inflammatory response. We evaluated the role and potential mechanism of Mof in the development of experimental colitis. Methods: We used Mof conditional knockout mice to study the role of Mof in dextran sulfate sodium (DSS)-induced colitis and detected the differential expression of genes due to Mof deficiency involved in the inflammatory response, particularly the Th17 signaling pathway, by western blotting, quantitative PCR and RNA sequencing (RNA-seq). Results: A significant elevation of Mof was observed in colonic tissues of mice with DSS-induced colitis. Mof deficiency alleviated the severity of DSS- induced colitis in mice. We found that Th17 signaling pathway associated genes, including Il17a, Il22, RORγt, RORα, Stat3, TGF-β 1, and Il6, were downregulated in colon tissues with Mof deficiency. RNA-seq data analysis suggested that 68 genes were related to inflammatory response processing and 47 genes were downregulated in Mof defective colon tissues. Conclusion: Our study demonstrated that HAT Mof is involved in the development of colitis, and the lack of Mof ameliorates DSS-induced colitis in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.