The current study aimed at developing diverse Trichoderma fusants for fungicides, drought, and salt tolerance with enhanced antagonistic activity against Sclerotium rolfsii Sacc. Trichoderma virens NBAII Tvs12 (mycoparasitic) and Trichoderma koningii MTCC796 (multistress tolerant) were used as parental strains for development of interspecific protoplast fusants. A total of 36 stable fusants were used for mycoparasitism, fungicides, and abiotic stresses (drought and salt) tolerance. The results revealed 20 homozygous progenies showing characteristics of either one parental strain and 14 heterozygous mutants depicting traits of both parental strains. A novel concept of inhibition coefficient was established using growth-related key parameters that represent the pathogen biology and the biocontrol-related biophysics of Trichoderma fusants. The results indicated a differential inhibition coefficient of the test pathogen and the highest (92.88%) inhibition coefficient of S. rolfsii was observed by interstable fusant Fu21. It also grew better under fungicides and abiotic stress (drought and salt) conditions. The molecular characterization and heterozygosity analysis evidenced the highest observed heterozygosity (0.5441) and gene flow (0.3872) in stable heterozygous Fu21. Principal coordinates analysis exhibited 62.7% of total variability. The ecofriendly heterozygous Trichoderma fusant (Fu21) might be useful for biocontrol of stem rot disease under adverse conditions or as a part of integrated disease management. K E Y W O R D S inhibition coefficient, molecular heterozygosity, protoplast fusion, Sclerotium rolfsii, Trichoderma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.