A unique in blow sampling system has been applied to a blowing converter to retrieve simultaneously representative bulk metal bath and slag/metal emulsion samples from seven specified positions and every 2 min from start of blow. Full sample datasets from 20 heats have been grouped according to differences in the bulk bath phosphorus removal profiles and analysed with respect to relative refining ability of the slag/metal emulsion and the bulk metal bath. The complexity of the thermokinetic relationships behind the removal of carbon and the transfer of silicon, phosphorus, manganese and sulphur between the metal and slag is highlighted and the metal circulation rate in the emulsion is derived.
A thermodynamic (equilibrium) model is developed for the BOF process. The predictions of this model show the trend of reactions when the process is considered to be at thermodynamic equilibrium. In the case of a real process, however, some tuning and adaptation becomes necessary to make more accurate predictions. A dynamic model is developed in which the kinetics of scrap dissolution is also incorporated. A comparison of the results of the equilibrium and dynamic models (made with some tuning parameters) reveals that mixing is the prime factor which can alter the course of reaction at any particular instant. Mixing is greatly affected by oxygen flow rate, lance height and the nature of scrap. The understanding of the secrets of process dynamics becomes clearer with this approach, providing a good insight into the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.