The dispersion features and quantization behavior, although a complicated function of physical and electrostatic confinement, can be explained at first order by looking at the anisotropic shape of the heavy-hole valence band.
The correct estimation of thermal properties of ultra-scaled CMOS and thermoelectric semiconductor devices demands for accurate phonon modeling in such structures. This work provides a detailed description of the modified valence force field (MVFF) method to obtain the phonon dispersion in zinc-blende semiconductors. The model is extended from bulk to nanowires after incorporating proper boundary conditions. The computational demands by the phonon calculation increase rapidly as the wire cross-section size increases. It is shown that the nanowire phonon spectrum differ considerably from the bulk dispersions. This manifests itself in the form of different physical and thermal properties in these wires. We believe that this model and approach will prove beneficial in the understanding of the lattice dynamics in the next generation ultra-scaled semiconductor devices.
The global transcription factor, p53, is a master regulator of gene expression in cells. Mutations in the TP53 gene promote unregulated cell growth through the inactivation of downstream effectors of the p53 pathway. In fact, mutant p53 is highly prone to misfolding and frequently resides inside the cell as large aggregates, causing loss of physiological function of the tumor-suppressor protein. Here, we review the plausible reasons for functional loss of p53, including amyloid formation leading to unhindered cancer progression. We discuss previous as well as recent findings regarding the amyloid formation of p53 in vitro and in vivo. We elaborate on prion-like properties of p53 amyloids and their possible involvement in cancer progression. Because the p53 pathway is historically most targeted for the development of anticancer therapeutics, we have also summarized some of the recent approaches and advances in reviving the antiproliferative activities of wild-type p53. In this Perspective, we provide insight into understanding p53 as a prion-like protein and propose cancer to be recognized as an amyloid or prion-like disease.
An enhanced valence force field model for zincblende crystals is developed to provide a unified description of the isothermal static and dynamical lattice properties of gallium arsenide. The expression for the lattice energy includes a second-nearest-neighbor coplanar interaction term, the Coulomb interaction between partially charged ions, and anharmonicity corrections. General relations are derived between the microscopic force constants and the macroscopic elastic constants in zincblende crystals. Applying the model to gallium arsenide, parameter sets are presented that yield quantitative agreement with experimental results for the phonon dispersion, elastic constants, sound velocities, and Grüneisen mode parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.