The performance of double hybrid density functionals (DHDFs) has been assessed by studying the spectroscopic properties and potential energy curves of OCS-C2H4 (carbonyl sulfide-ethylene) and OCS-C4H6 (carbonyl sulfide-dimethylacetylene) van der Waals complexes. Both dispersion corrected and uncorrected DHDF theories have been applied to study the intermolecular interaction energies, stability, spectroscopic parameters, rigidity, and binding energies or depths of the potential well of the weakly bound complexes and also to explore the possibility of formation of three isomers of each complex. The correlation consistent valence triple zeta quality basis set is used to investigate the complexes. The calculated results provide insight into the computational methods applied to the weakly bound complexes. The double hybrid density functional B2PLYP and mPW2PLYP methods with dispersion corrections (B2PLYP-D2, B2PLYP-D3 and mPW2PLYP-D2, mPW2PLYP-D3) performed better over the B2PLYP and mPW2PLYP density functional methods without dispersion correction to deal with the weak dispersion interaction that prevails in these complexes. The results obtained by the dispersion-corrected density functional mPW2PLYP-D2 and mPW2PLYP-D3 methods agree very well with the earlier experimental values wherever available. The contributing components of the interaction energy have been analyzed by the symmetry-adapted perturbation theory (SAPT, here, SAPT0) to get insight into the interaction energy.
Accurate static dipole polarizabilities and hyperpolarizabilities are calculated for the ground states of the boron, carbon, nitrogen, oxygen and fluorine atoms. Anisotropies are reported for the P-state atoms. The computations are based on a finite-field procedure using energies computed with basis sets of contracted Gaussian-type functions and the CCSD(T) method, that is the coupled cluster method in the space of single and double substitutions corrected non-iteratively for the effects of triple substitutions. These are the first electron-correlated hyperpolarizabilities reported to date for all but one of these atoms.
The mechanism for the aminolysis of a model nerve agent, O,S-dimethyl methylphosphonothiolate, is investigated both at density functional level using M062X method with 6-311++G(d,p) basis set and at ab initio level using the second-order Møller-Plesset perturbation theory (MP2) with the 6-311+G(d,p) basis set. The catalytic role of an additional NH(3) and H(2)O molecule is also examined. The solvent effects of acetonitrile, ethanol, and water are taken into account employing the conductor-like screening model (COSMO) at the single-point M062X/6-311++G(d,p) level of theory. Two possible dissociation pathways, methanethiol and methyl alcohol dissociations, along with two different neutral mechanisms, a concerted one and a stepwise route through two neutral intermediates, for each pathway are investigated. Hyperconjugation stabilization that has an effect on the stability of generated transition states are investigated by natural bond order (NBO) approach. Additionally, quantum theory of atoms in molecules analysis is performed to evaluate the bond critical (BCP) properties and to quantify strength of different types of interactions. The calculated results predict that the reaction of O,S-dimethyl methylphosphonothiolate with NH(3) gives rise to parallel P-S and P-O bond cleavages, and in each cleavage the neutral stepwise route is always favorable than the concerted one. The mechanism of NH(3) and H(2)O as catalyst is nearly similar, and they facilitate the shuttle of proton to accelerate the reaction. The steps involving the H(2)O-mediated proton transfer are the most suitable ones. The first steps for the stepwise process, the formation of neutral intermediate, are the rate-determining step. It is observed that in the presence of catalyst the reaction in the stepwise path possesses almost half the activation energy of the uncatalyzed one. A bond-order analysis using Wiberg bond indexes obtained by NBO calculation predicts that usually all individual steps of the reactions occur in a concerted fashion showing equal progress along different reaction coordinates.
N-heterocyclic
carbene (NHC) organocatalysis is widely employed
for the umpolung of aldehydes and recently to the umpolung of Michael
acceptors and aldimines. Described herein is the NHC-organocatalyzed
umpolung of aldimines for the enantioselective synthesis of nitrogen
heterocycles. The bisimines generated from the condensation of 1,2-phenylenediamines
and salicylaldehydes undergo intramolecular cyclization in the presence
of a chiral NHC catalyst, resulting in the formation of dihydroquinoxalines
in moderate to good yields and er values. Detailed DFT studies shed
light on the role of −OH groups in stabilizing the initially
generated aza-Breslow intermediates via intramolecular hydrogen bonds.
Preliminary photophysical studies on the synthesized dihydroquinoxalines
revealed that these molecules can be used for the sensing of various
acids and bases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.