The text in many web documents is organized into a hierarchy of section titles and corresponding prose content, a structure which provides potentially exploitable information on discourse structure and topicality. However, this organization is generally discarded during text collection, and collecting it is not straightforward: the same visual organization can be implemented in a myriad of different ways in the underlying HTML. To remedy this, we present a flexible system for automatically extracting the hierarchical section titles and prose organization of web documents irrespective of differences in HTML representation. This system uses features from syntax, semantics, discourse and markup to build two models which classify HTML text into section titles and prose text. When tested on three different domains of web text, our domainindependent system achieves an overall precision of 0.82 and a recall of 0.98. The domaindependent variation produces very high precision (0.99) at the expense of recall (0.75). These results exhibit a robust level of accuracy suitable for enhancing question answering, information extraction, and summarization. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.