The frontal part of the active, wedge-shaped Indo-Eurasian collision boundary is defined by the Himalayan fold-and-thrust belt whose foreland basin accumulated sediments that eventually became part of the thrust belt and is presently exposed as the sedimentary rocks of the Siwalik Group. The rocks of the Siwalik Group have been extensively studied in the western and Nepal Himalaya and have been divided into the Lower, Middle and Upper Subgroups. In the Darjiling-Sikkim Himalaya, the Upper Siwalik sequence is not exposed and the Middle Siwalik Subgroup exposed in the Tista river valley of Darjiling Himalaya preserves a ∼325 m thick sequence of sandstone, conglomerate and shale. The Middle Siwalik section has been repeated by a number of north dipping thrusts. The sedimentary facies and facies associations within the lithostratigraphic column of the Middle Siwalik rocks show temporal repetition of sedimentary facies associations suggesting oscillation between proximal-, mid-and distal fan setups within a palaeo-alluvial fan depositional environment similar to the depositional setup of the Siwalik sediments in other parts of the Himalaya. These oscillations are probably due to a combination of foreland-ward movement of Himalayan thrusts, climatic variations and mountain-ward shift of fanapex due to erosion. The Middle Siwalik sediments were derived from Higher-and Lesser Himalayan rocks. Mineral characteristics and modal analysis suggest that sedimentation occurred in humid climatic conditions similar to the moist humid climate of the present day Eastern Himalaya.
The Himalayan fold-and-thrust belt has propagated from its Tibetan hinterland to the southern foreland since ∼55 Ma. The Siwalik sediments (∼20 -2 Ma) were deposited in the frontal Himalayan foreland basin and subsequently became part of the thrust belt since ∼ 12 Ma. Restoration of the deformed section of the Middle Siwalik sequence reveals that the sequence is ∼325 m thick. Sedimentary facies analysis of the Middle Siwalik rocks points to the deposition of the Middle Siwalik sediments in an alluvial fan setup that was affected by uplift and foreland-ward propagation of Greater and Lesser Himalayan thrusts. Soft-sediment deformation structures preserved in the Middle Siwalik sequence in the Darjiling Himalaya are interpreted to have formed by sediment liquefaction resulting from increased pore-water pressure probably due to strong seismic shaking. Soft-sediment structures such as convolute lamination, flame structures, and various kinds of deformed cross-stratification are thus recognized as palaeoseismic in origin. This is the first report of seismites from the Siwalik succession of Darjiling Himalaya which indicates just like other sectors of Siwalik foreland basin and the present-day Gangetic foreland basin that the Siwalik sediments of this sector responded to seismicity.
A petrography-geochemistry-based evaluation of the provenance of the sandstones of the Tertiary Middle Siwalik Subgroup in the Lish River Valley, West Bengal, is presented. The framework grains in the sandstones suggest mixing of sediments from spatially separated gneissic, quartzitic and phyllitic source rocks. Modal values of different framework minerals suggest that recycled sediments in an orogenic setting were deposited in the Middle Siwalik basin in the area. The major and trace element ratios suggest dominantly felsic input and mixing with subordinate basic material in an upper continental crustal setup. The major and trace element data also indicate that rocks of a passive margin setting acted as the source to the sediments. The present paper postulates that the Middle Siwalik sediments were derived from pre-Himalayan gneissic and metabasic rocks of an erstwhile passive margin setting and presently forming the Higher and Lesser Himalaya, respectively. basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.