BackgroundThe medicinal importance of a novel plant Olax nana Wall. ex Benth. (family: Olacaceae) was revealed for the first time via HPLC-DAD finger printing, qualitative phytochemical analysis, antioxidant, cholinesterase, and α-glucosidase inhibitory assays.MethodsThe crude methanolic extract of O. nana (ON-Cr) was subjected to qualitative phytochemical analysis and HPLC-DAD finger printing. The antioxidant potential of ON-Cr was assessed via 1,1-diphenyl,2-picrylhydrazyl (DPPH), 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) and hydrogen peroxide (H2O2) free radical scavenging assays. Furthermore, acetylcholinesterase (AChE) & butyrylcholinesterase (BChE) inhibitory activities were performed using Ellman’s assay, while α- glucosidase inhibitory assay was carried out using a standard protocol.ResultsThe qualitative phytochemical analysis of ON-Cr revealed the presence of secondary metabolites like alkaloids, flavonoids, tannins, sterols, saponins and terpenoids. The HPLC-DAD finger printing revealed the presence of 40 potential compounds in ON-Cr. Considerable anti-radical activities was revealed by ON-Cr in the DPPH, ABTS and H2O2 free radical scavenging assays with IC50 values of 71.46, 72.55 and 92.33 μg/mL, respectively. Furthermore, ON-Cr showed potent AChE and BChE inhibitory potentials as indicated by their IC50 values of 33.2 and 55.36 μg/mL, respectively. In the α-glucosidase inhibition assay, ON-Cr exhibited moderate inhibitory propensity with an IC50 value of 639.89 μg/mL.ConclusionsThis study investigated Olax nana for the first time for detailed qualitative phytochemical tests, HPLC-DAD finger printing analysis, antioxidant, anticholinesterase and α-glucosidase inhibition assays. The antioxidant and cholinesterase inhibitory results were considerable and can provide scientific basis for further studies on the neuroprotective and anti-Alzheimer’s potentials of this plant. ON-Cr may further be subjected to fractionation and polarity guided fractionation to narrow down the search for isolation of bioactive compounds.
With the development of the latest technologies, scientists are looking to design novel strategies for the treatment and diagnosis of cancer. Advances in medicinal plant research and nanotechnology have attracted many researchers to the green synthesis of metallic nanoparticles due to its several advantages over conventional synthesis (simple, fast, energy efficient, one pot processes, safer, economical and biocompatibility). Medicinally active plants have proven to be the best reservoirs of diverse phytochemicals for the synthesis of biogenic silver nanoparticles (AgNPs). In this review, we discuss mechanistic advances in the synthesis and optimization of AgNPs from plant extracts. Moreover, we have thoroughly discussed the recent developments and milestones achieved in the use of biogenic AgNPs as cancer theranostic agents and their proposed mechanism of action. Anticipating all of the challenges, we hope that biogenic AgNPs may become a potential cancer theranostic agent in the near future.
Tailoring personalized cancer nanomedicines demands detailed understanding of the tumor microenvironment. In recent years, smart upconversion nanoparticles with the ability to exploit the unique characteristics of the tumor microenvironment for precise targeting have been designed. To activate upconversion nanoparticles, various bio‐physicochemical characteristics of the tumor microenvironment, namely, acidic pH, redox reactants, and hypoxia, are exploited. Stimuli‐responsive upconversion nanoparticles also utilize the excessive presence of adenosine triphosphate (ATP), riboflavin, and Zn2+ in tumors. An overview of the design of stimulus‐responsive upconversion nanoparticles that precisely target and respond to tumors via targeting the tumor microenvironment and intracellular signals is provided. Detailed understanding of the tumor microenvironment and the personalized design of upconversion nanoparticles will result in more effective clinical translation.
Nanotechnology has emerged as a prominent scientific discipline in the technological revolution of this millennium. The scientific community has focused on the green synthesis of metal nanoparticles as compared to physical and chemical methods due to its eco-friendly nature and high efficacy. Medicinal plants have been proven as the paramount source of various phytochemicals that can be used for the biogenic synthesis of colloidal silver and gold nanoparticles as compared to other living organisms, e.g., microbes and fungi. According to various scientific reports, the biogenic nanoparticles have shown promising potential as wound healing agents. However, not a single broad review article was present that demonstrates the wound healing application of biogenic silver and gold nanoparticles. Foreseeing the overall literature published, we for the first time intended to discuss the current trends in wound healing via biogenic silver and gold nanoparticles. Furthermore, light has been shed on the mechanistic aspects of wound healing along with futuristic discussion on the faith of biogenic silver and gold nanoparticles as potential wound healing agents.
Doxorubicin (DOX) is the most effective chemotherapeutic drug developed against broad range of cancers such as solid tumours, transplantable leukemias and lymphomas. Conventional DOX-induced cardiotoxicity has limited its use. FDA approved drugs i.e. non-pegylated liposomal (Myocet) and pegylated liposomal (Doxil) formulations have no doubt shown comparatively reduced cardiotoxicity, but has raised new toxicity issues. The entrapment of DOX in biocompatible, biodegradable and safe nano delivery systems can prevent its degradation in circulation minimising its toxicity with increased half-life, enhanced pharmacokinetic profile leading to improved patient compliance. In addition, nano delivery systems can actively and passively target the tumour resulting increase in therapeutic index and decreased side effects of drug. Foreseeing the need of a comprehensive review on DOX nanoformulations, in this article we for the first time have given an updated insight on DOX nano delivery systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.