Abstrak Seiring berkembangnya bisnis modern, prediksi harga saham selalu mendapat perhatian khusus oleh pakar ekonomi. Prediksi nilai saham menggunakan model Multiple Linear Regression (MLR) telah terbukti memberikan nilai prediksi yang presisi dan cukup baik. Namun di sisi lain, regresi linear memiliki beberapa kelemahan terhadap data outlier. Oleh karena itu pada penelitian ini dilakukan prediksi nilai harga saham menggunakan MLR yang dibantu dengan teknik K-Means dan Moving Average (MA) untuk mengatasi pengaruh data outlier. Pengujian diawali dengan pengumpulan data dan pra-proses data. Data harga saham yang akan digunakan dalam pengujian diperoleh dari laman finance.yahoo.com dengan kategori "Jakarta Composite Index (^JKSE)". Selanjutnya proses prediksi dilakukan dengan hybrid MLR dengan K-Means dan MA untuk mengatasi titik-titik saham yang outlier. Dari hasil yang diperoleh, dapat dilihat bahwa pendekatan paling baik ditunjukkan oleh metode MLR dan MA yakni dengan nilai MSE sebesar 15087.465, RMSE sebesar 122.831, dan MAPE sebesar 3.255.
AbstractNowadays, stock price prediction got special attention by economist or investor. Besides that, stock prediction based on Multiple Linear Regression (MLR) shows a good prediction. However, linear regression has a weakness to outlier data. Therefore, in this study, the stock price prediction using MLR is aided by K-Means and Moving Average (MA) to help MLR in outlier case. In this paper, stock data is obtained from the finance.yahoo.com on category "Jakarta Composite Index (^ JKSE)". Improved MLR with K-Means and MA are used to overcome the outlier stock. From the results obtained that the best approach is shown by MLR and MA with the value of MSE is 15087.465, RMSE is 122.831, and MAPE is 3.255.
Today, in the era of Marketing 5.0, sell business using technology are highly recommended. The owner of the Al-Barkah groceries agent in Kediri-East Java is one of the entrepreneurs who use social media information technology such WhatsApp. However, the problems encountered is the limited feature of stories on WhatsApp so that it cannot optimally accommodate wider marketing to the public. Therefore, it is a needed a media that can store information on Al-Barkah products and also can be seen without a duration of time. This media is also expected to be connected with WhatsApp that has been used for marketing before. Thus, this study aims to develop a website containing business information or what is popular as a Company Profile. Furthermore, it is also integrated with WhatsApp social media. Then, system development stages start from system requirements analysis, design, implementation in programming, and system testing. The result of this research is a company profile web-based that has been tested according to the designed functional requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.