This study compared two neural network models (Multilayer Perceptron and Generalized Regression Neural Network) with a view to identifying the best model for predicting students' academic performance based on single performance factor. Only academic factor (students' results) was considered as the single performance factor of the study. One cohort of graduated students' academic data was collected from the
Embroidery is the art that is majorly practised in Nigeria, which requires creativity and skills. However, differentiating between two standard embroidery patterns pose challenges to wearers of the patterns. This study developed a classification system to improve the embroiderer to user relationship. The specific characteristics are used as feature sets to classify two common African embroidery patterns (handmade and tinko) are shape, brightness, thickness and colour. The system developed and simulated in MATLAB 2016a environment employed Cellular Learning Automata (CLA) and Support Vector Machine (SVM) as its classifier. The classification performance of the proposed system was evaluated using precision, recall, and accuracy. The system obtained an average precision of 0.93, average recall of 0.81, and average accuracy of 0.97 in classifying the handmade and tinko embroidery patterns considered in this study. This study also presented an experimental result of three validation models for training and testing the dataset used in this study. The model developed an improved and refined embroiderer for eliminating stress related to the manual pattern identification process.
With the increasingly broadening adoption of Electronic Health Record (EHR) worldwide, there is a growing need to widen the use of EHR to support clinical decision making and research particularly in radiology. A number of studies on generation, analysis and presentation of chest x-ray reports from digital images to detect abnormalities have been well documented in the literature but studies on automatic analysis of chest x-ray reports have not been well represented. Interestingly, there is a large amount of unstructured electronic chest x-ray notes that need to be organized and processed in such a way that it can be automated for the purpose of giving urgent attention to abnormal radiographs in clinical findings to allow for quicker report analysis and decision making. This study developed a system to automate this analysis in order to prioritize findings from chest x-rays using support vector machine and Lagrange Multiplier for the constraint optimization. The classification model was implemented using Python programming language and Django framework. The developed system was evaluated based on precision, recall, f1-score, negative predictive value (NPV). Expert's knowledge was also used as gold standard and comparison with the existing system. The result showed a precision of 96.04%, recall of 95.10%, f1-score of 95.57%, specificity of 86.21%, negative predictive value of 83.33% and an accuracy of 93.13%. The study revealed that a limited but important number of relevant attributes provided an effective and efficient model for the detection of cardiomegaly in clinical chest x-ray reports. From the evaluation result, it is evident that this system can help the clinicians to quickly prioritize findings from chest x-ray reports, thereby reducing the delay in attending to patients. Hence, the developed system could be used for the analysis of chest x-ray reports with the purpose of diagnosing the patient for cardiomegaly. Chest X-ray reports are usually textual, therefore, further studies can introduce spell checker to the system to provide higher sensitivity.
Customer service is an important area in the success of a system or a service. For services that have a relatively large customer base, the efficiency with which complaints are attended to becomes an issue. The Computer Centre of the Obafemi Awolowo University attends to students with various complaints majorly in relation to their e-portal accounts. Although efforts are in place to manage the crowd, there is still a major need for the complaint management service to save time and energy. The need for a system that can handle the enormous request and complaints of the undergraduate students of the institution is the thesis of this work. Design and implementation was done using the range of tools provided by the Microsoft Bot Framework. C# Programming language was used to implement the decision algorithm. Online web services were used to handle natural language understanding and the Bot Connector to implement the Web Canvas. Microsoft Azure Service was used to host the web after which evaluations were drawn through surveys. Thus, this study projected an easier flow of operations involving logging of complaints by students.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.