Deficits in response inhibition have been observed in schizophrenia and bipolar disorder; however, the neural origins of the abnormalities and their relevance to genetic liability for psychosis are unknown. We used a stop‐signal task to examine motor inhibition and associated neural processes in schizophrenia patients (n = 57), bipolar disorder patients (n = 21), first‐degree biological relatives of patients with schizophrenia (n = 34), and healthy controls (n = 56). Schizophrenia patients demonstrated motor control deficits reflected in longer stop‐signal reaction times and elongated reaction times. With the possibility of needing to inhibit a button press, both schizophrenia and bipolar disorder patients showed diminished reductions of the P300 brain response and only the healthy controls demonstrated adjustments in response execution time, as measured by response‐locked lateralized readiness potentials. Schizotypal traits in the biological relatives were associated with less P300 modulation consistent with the motor‐related anomalies being associated with subtle schizophrenia‐spectrum symptomatology in family members. The two patient groups had elongated response selection processes as manifest in the delayed onset of the stimulus‐locked lateralized readiness potential. The bipolar disorder group was unique in showing significantly diminished neural responses to the stop‐signal to inhibit a response. Antipsychotic medication dosage was related to worse motor inhibition, thus motor inhibition deficits in schizophrenia may be partially explained by the effect of pharmacological agents. Failed modulation of brain processes in relation to response inhibition probability and the lengthening of motor response selection appear to be transdiagnostic abnormalities spanning schizophrenia and bipolar disorder.
TM appears to be an acceptable and effective treatment for veterans with PTSD that warrants further study regarding specific outcomes and beneficial changes in brain function. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Background: A number of motor abnormalities have been reported in psychotic disorders, including dyskinesia and psychomotor slowing. There is also evidence for many of the same motor abnormalities in biological first-degree relatives and accruing evidence for motor abnormalities in bipolar disorder. In addition to motor dysfunction, there are also shared symptom domains amongst these populations. Objectives: We explored the associations of (1) current and lifetime psychosis and mood symptom domains and (2) domains of psychosis proneness with various domains of motor function in a transdiagnostic sample (n = 149). Method: Individuals with schizophrenia, schizoaffective disorder, or bipolar disorder, biological first-degree relatives of individuals with a psychotic disorder, and controls completed measures of psychomotor speed and movement fluidity, and neural activity related to motor preparation (stimulus-locked lateralized readiness potential, S-LRP) and execution (response-locked LRP) was assessed using EEG. All participants completed the Brief Psychiatric Rating Scale; patients were additionally assessed for lifetime psychosis and mood episode symptoms, and relatives and controls completed the Chapman psychosis proneness scales. Results: Multiple regression revealed levels of current negative symptoms and mania were significantly positively associated with psychomotor slowing even after accounting for current antipsychotic medication dosage and duration of illness. S-LRP onset latency was significantly positively associated with magical ideation. Conclusion: Domains of motor function are associated with various mood and psychosis symptom domains in a transdiagnostic sample, which may provide insight into brain abnormalities relevant to the expression of symptoms across disorders.
During normal visual behavior, individuals scan the environment through a series of saccades and fixations. At each fixation, the phase of ongoing rhythmic neural oscillations is reset, thereby increasing efficiency of subsequent visual processing. This phase-reset is reflected in the generation of a fixation-related potential (FRP). Here, we evaluate the integrity of theta phase-reset/FRP generation and Guided Visual Search task in schizophrenia. Subjects performed serial and parallel versions of the task. An initial study (15 healthy controls (HC)/15 schizophrenia patients (SCZ)) investigated behavioral performance parametrically across stimulus features and set-sizes. A subsequent study (25-HC/25-SCZ) evaluated integrity of search-related FRP generation relative to search performance and evaluated visual span size as an index of parafoveal processing. Search times were significantly increased for patients versus controls across all conditions. Furthermore, significantly, deficits were observed for fixation-related theta phase-reset across conditions, that fully predicted impaired reduced visual span and search performance and correlated with impaired visual components of neurocognitive processing. By contrast, overall search strategy was similar between groups. Deficits in theta phase-reset mechanisms are increasingly documented across sensory modalities in schizophrenia. Here, we demonstrate that deficits in fixation-related theta phase-reset during naturalistic visual processing underlie impaired efficiency of early visual function in schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.