Strong social ties correspond with better health and well being, but the neural mechanisms linking social contact to health remain speculative. This study extends work on the social regulation of brain activity by supportive handholding in 110 participants (51 female) of diverse racial and socioeconomic origins. In addition to main effects of social regulation by handholding, we assessed the moderating effects of both perceived social support and relationship status (married, cohabiting, dating or platonic friends). Results suggest that, under threat of shock, handholding by familiar relational partners attenuates both subjective distress and activity in a network associated with salience, vigilance and regulatory self-control. Moreover, greater perceived social support corresponded with less brain activity in an extended network associated with similar processes, but only during partner handholding. In contrast, we did not observe any regulatory effects of handholding by strangers, and relationship status did not moderate the regulatory effects of partner handholding. These findings suggest that contact with a familiar relational partner is likely to attenuate subjective distress and a variety of neural responses associated with the presence of threat. This effect is likely enhanced by an individual’s expectation of the availability of support from their wider social network.
Compensatory neural plasticity occurs in both hemispheres following unilateral cortical damage incurred by seizures, stroke, and focal lesions. Plasticity is thought to play a role in recovery of function, and is important for the utility of rehabilitation strategies. Such effects have not been well described in models of traumatic brain injury (TBI). We examined changes in immunoreactivity for neural structural and plasticity-relevant proteins in the area surrounding a controlled cortical impact (CCI) to the forelimb sensorimotor cortex (FL-SMC), and in the contralateral homotopic cortex over time (3-28 days). CCI resulted in considerable motor deficits in the forelimb contralateral to injury, and increased reliance on the ipsilateral forelimb. The density of dendritic processes, visualized with immunostaining for microtubule-associated protein-2 (MAP-2), were bilaterally decreased at all time points. Synaptophysin (SYN) immunoreactivity increased transiently in the injured hemisphere, but this reflected an atypical labeling pattern, and it was unchanged in the contralateral hemisphere compared to uninjured controls. The lack of compensatory neuronal structural plasticity in the contralateral homotopic cortex, despite behavioral asymmetries, is in contrast to previous findings in stroke models. In the cortex surrounding the injury (but not the contralateral cortex), decreases in dendrites were accompanied by neurodegeneration, as indicated by Fluoro-Jade B (FJB) staining, and increased expression of the growth-inhibitory protein Nogo-A. These studies indicate that, following unilateral CCI, the cortex undergoes neuronal structural degradation in both hemispheres out to 28 days post-injury, which may be indicative of compromised compensatory plasticity. This is likely to be an important consideration in designing therapeutic strategies aimed at enhancing plasticity following TBI.
Multi-subject functional magnetic resonance imaging (fMRI) data has been increasingly used to study the population-wide relationship between human brain activity and individual biological or behavioral traits. A common method is to regress the scalar individual response on imaging predictors, known as a scalar-on-image (SI) regression. Analysis and computation of such massive and noisy data with complex spatio-temporal correlation structure is challenging. In this article, motivated by a psychological study on human affective feelings using fMRI, we propose a joint Ising and Dirichlet Process (Ising-DP) prior within the framework of Bayesian stochastic search variable selection for selecting brain voxels in high-dimensional SI regressions. The Ising component of the prior makes use of the spatial information between voxels, and the DP component groups the coefficients of the large number of voxels to a small set of values and thus greatly reduces the posterior computational burden. To address the phase transition phenomenon of the Ising prior, we propose a new analytic approach to derive bounds for the hyperparameters, illustrated on 2-and 3-dimensional lattices. The proposed method is compared with several alternative methods via simulations, and is applied to the fMRI data collected from the KLIFF hand-holding experiment.
BackgroundSocial anxiety has been associated with potentiated negative affect and, more recently, with diminished positive affect. It is unclear how these alterations in negative and positive affect are represented neurally in socially anxious individuals and, further, whether they generalize to non-social stimuli. To explore this, we used a monetary incentive paradigm to explore the association between social anxiety and both the anticipation and consumption of non-social incentives. Eighty-four individuals from a longitudinal community sample underwent functional magnetic resonance imaging (fMRI) while participating in a monetary incentive delay (MID) task. The MID task consisted of alternating cues indicating the potential to win or prevent losing varying amounts of money based on the speed of the participant’s response. We examined whether self-reported levels of social anxiety, averaged across approximately 7 years of data, moderated brain activity when contrasting gain or loss cues with neutral cues during the anticipation and outcome phases of incentive processing. Whole brain analyses and analyses restricted to the ventral striatum for the anticipation phase and the medial prefrontal cortex for the outcome phase were conducted.ResultsSocial anxiety did not associate with differences in hit rates or reaction times when responding to cues. Further, socially anxious individuals did not exhibit decreased ventral striatum activity during anticipation of gains or decreased MPFC activity during the outcome of gain trials, contrary to expectations based on literature indicating blunted positive affect in social anxiety. Instead, social anxiety showed positive associations with extensive regions implicated in default mode network activity (for example, precuneus, posterior cingulate cortex, and parietal lobe) during anticipation and receipt of monetary gain. Social anxiety was further linked with decreased activity in the ventral striatum during anticipation of monetary loss.ConclusionsSocially anxious individuals may increase default mode network activity during reward processing, suggesting high self-focused attention even in relation to potentially rewarding stimuli lacking explicit social connotations. Additionally, social anxiety may relate to decreased ventral striatum reactivity when anticipating potential losses.
Social support may normalize stress reactivity among highly anxious individuals, yet little research has examined anxious reactions in social contexts. We examined the role of both state and trait anxiety in the link between social support and the neural response to threat. We employed an fMRI paradigm in which participants faced the threat of electric shock under three conditions: alone, holding a stranger's hand, and holding a friend's hand. We found significant interactions between trait anxiety and threat condition in regions including the hypothalamus, putamen, precentral gyrus, and precuneus. Analyses revealed that highly trait anxious individuals were less active in each of these brain regions while alone in the scanner—a pattern that suggests the attentional disengagement associated with the perception of high intensity threats. These findings support past research suggesting that individuals high in anxiety tend to have elevated neural responses to mild or moderate threats but paradoxically lower responses to high intensity threats, suggesting a curvilinear relationship between anxiety and threat responding. We hypothesized that for highly anxious individuals, shock cues would be perceived as highly threatening while alone in the scanner, possibly due to attentional disengagement, but this perception would be mitigated if they were holding someone's hand. The disengagement seen in highly anxious people under conditions of high perceived threat may thus be alleviated by social proximity. These results suggest a role for social support in regulating emotional responses in anxious individuals, which may aid in treatment outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.