Systemic arterial compliance, a major component of aortic input impedance, was determined in 10 patients with congestive heart failure secondary to idiopathic dilated cardiomyopathy and 11 age-matched control subjects found free of detectable cardiovascular disease. Total arterial compliance was determined from high-fidelity ascending aortic pressure and velocity recordings using 1) the traditional monoexponential aortic diastolic pressure decay and 2) the direct solution of the equation, which describes the three-element windkessel model of the arterial system. Resting values for total arterial compliance (x10(-3) cm5/dyn) derived from method 1 were significantly correlated with compliance derived from method 2 (r = 0.89, P less than 0.01). However, method 1 values (control mean 1.15 +/- 0.27, heart failure mean 1.18 +/- 0.54) were consistently and significantly lower (P less than 0.001) than method 2 values (control mean 1.59 +/- 0.50, heart failure mean 1.38 +/- 0.60). Resting total arterial compliance in heart-failure patients was not significantly different from control subjects. Total arterial compliance did not significantly change with exercise in either group despite increases in arterial pressure. However, nitroprusside administration in the heart-failure group increased total arterial compliance both at rest and on exercise compared with the unmedicated state. These different methodological approaches to the estimation of total arterial compliance in humans resulted in significantly different absolute values for compliance, although both methods provided concordant results with respect to the response of arterial compliance to physiological and pharmacological interventions.(ABSTRACT TRUNCATED AT 250 WORDS)
Recently, there has been renewed interest in estimating total arterial compliance. Because it cannot be measured directly, a lumped model is usually applied to derive compliance from aortic pressure and flow. The archetypical model, the classical two-element windkessel, assumes 1) system linearity and 2) infinite pulse wave velocity. To generalize this model, investigators have added more elements and have incorporated nonlinearities. A different approach is taken here. It is assumed that the arterial system 1) is linear and 2) has finite pulse wave velocity. In doing so, the windkessel is generalized by describing compliance as a complex function of frequency that relates input pressure to volume stored. By applying transmission theory, this relationship is shown to be a function of heart rate, peripheral resistance, and pulse wave reflection. Because this pressure-volume relationship is generally not equal to total arterial compliance, it is termed “apparent compliance.” This new concept forms the natural counterpart to the established concept of apparent pulse wave velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.