This report evaluates pulse wave propagation with respect to contributions by vascular wall elastic and geometric properties, vessel wall and blood viscosity, and nonlinearities in system parameters and in the equations of motion. Discrepancies in results obtained with different experimental methods and theory are discussed and resolved. A three-point pressure technique was used to obtain measurements from the abdominal aorta, carotid, iliac, and femoral arteries of dogs. Computations involved linear, as well as nonlinear methods. Results are presented along a continuous path of transmission (abdominal aorta, iliac, femoral), and it is shown that variations in phase velocity can be explained entirely by the geometric variation of these vessels. Phase velocities are shown to be frequency independent at approximately greater than 4 Hz whereas attenuation increases progressively for higher frequencies. Determination of propagation coefficients using maximal, compounded values of reported viscoelastic and geometric properties just manages to span the range of phase velocities, determined in different laboratories, but does not do so for attenuation. Also, differences in experimental techniques cannot explain these discrepancies. Consideration of geometric taper, nonlinear compliance, all the terms in the equation of motion, and the effect of wall and blood viscosity resolves discrepancies between theoretical and experimentally derived phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.