<p class="Abstract">This study presents characterization of cracking in pavement distress using image processing techniques and <em>k</em>-nearest neighbour (kNN) classifier. The proposed semi-automated detection system for characterization on pavement distress anticipated to minimize the human supervision from traditional surveys and reduces cost of maintenance of pavement distress. The system consists of 4 stages which are image acquisition, image processing, feature extraction and classification. Firstly, a tool for image acquisition, consisting of digital camera, camera holder and tripod, is developed to capture images of pavement distress. Secondly, image processing techniques such as image thresholding, median filter, image erosion and image filling are applied. Thirdly, two features that represent the length of pavement cracking in <em>x</em> and <em>y</em> coordinate system namely <em>delta_x</em> and <em>delta_y</em> are computed. Finally, the computed features is fed to a kNN classifier to build its committee and further used to classify the pavement cracking into two types; transverse and longitudinal cracking. The performance of kNN classifier in classifying the type of pavement cracking is also compared with a modified version of kNN called fuzzy kNN classifier. Based on the results from images analysis, the semi-automated image processing system is able to consistently characterize the crack pattern with accuracy up to 90%. The comparison of analysed data with field data shows good agreement in the pavement distress characterization. Thus the encouraging results of semi-automated image analysis system will be useful for developing a more efficient road maintenance process.</p>
Water quality monitoring plays a significant part in the transition towards intelligent and smart agriculture and provides an easy transition to automated monitoring of crucial components of human daily needs as new technologies are continuously developed and adopted in agricultural and human daily life (water). For the monitoring and management of water quality, this effort, however, requires reliable models with accurate and thorough datasets. Analyzing water quality monitoring models by utilizing sensors that gather water properties during live experiments is possible due to the necessity for precision in modeling. To convey numerous conclusions regarding the concerns, issues, difficulties, and research gaps that have existed throughout the past five years (2018–2022), this review article thoroughly examines the water quality literature. To find trustworthy peer-reviewed publications, several digital databases were searched and examined, including IEEE Xplore®, ScienceDirect, Scopus, and Web of Science. Only 50 articles out of the 946 papers obtained, were used in the study of the water quality monitoring research area. There are more rules for article inclusion in the second stage of the filtration process. Utilizing a real-time data acquisition system, the criteria for inclusion for the second phase of filtration looked at the implementation of water quality monitoring and characterization procedures. Reviews and experimental studies comprised most of the articles, which were divided into three categories. To organize the literature into articles with similar types of experimental conditions, a taxonomy of the three literature was created. Topics for recommendations are also provided to facilitate and speed up the pace of advancement in this field of study. By conducting a thorough analysis of the earlier suggested methodologies, research gaps are made clear. The investigation largely pointed out the problems in the accuracy of the models, the development of data-gathering systems, and the types of data used in the proposed frameworks. Finally, by examining critical topics required for the development of this research area, research directions toward smart water quality are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.