Microspheres are small spherical particles, with diameters 1 μm to 1000 μm. 1 Their spherical nature allows for free flowing of the particles. 2 Porous microspheres have been made from silica, carbons, polymers, metals and metal oxides. As such they have drawn attention for applications in catalysis, micro-reactors and biomedicine. 3,4 These materials offer unique properties such as their tunable surface area, reactivity, pore volume, hydrophilicity, and hydrophobicity, all of which can be useful for environmental remediation, separation science, and purification technology. 5,6 From industrial prospective microspheres can also be more efficiently packed into fixed bed reactors or columns. 7 The existence of micro-pollutants in water sources, as well as their harmful effects has been described as a global problem. 8 Only dyes alone account for 12 to 14%
This study investigates the role of yttrium in phosphate-based glasses in the system 45(P2O5)–25(CaO)– (30-x)(Na2O)–x(Y2O3) (0≤x≤5) prepared via melt quenching and focuses on their structural characterisation and degradation properties. The structural analyses were performed using a combination of solid-state nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). 31P NMR analysis showed that depolymerisation of the phosphate network occurred which increased with Y2O3 content as metaphosphate units (Q2) decreased with subsequent increase in pyrophosphate species (Q1). The NMR results correlated well with structural changes observed via FTIR and XPS analyses. XRD analysis of crystallised glass samples revealed the presence of calcium pyrophosphate (Ca2P2O7) and sodium metaphosphate (NaPO3) phases for all the glass formulations explored. Yttrium-containing phases were found for the formulations containing 3 and 5 mol% Y2O3. Degradation analyses performed in Phosphate buffer saline (PBS) and Milli-Q water revealed significantly reduced rates with addition of Y2O3 content. This decrease was attributed to the formation of Y-O-P bonds where the octahedral structure of yttrium (YO6) cross-linked phosphate chains, subsequently leading to an increase in chemical durability of the glasses. The ion release studies also showed good correlation with the degradation profiles.
Yttrium‐doped glasses have been utilized for biomedical applications such as radiotherapy, especially for liver cancer treatment. In this paper, the crystallization behavior of phosphate‐based glasses doped with yttrium (in the system 45P2O5–(30 − x) Na2O–25CaO–xY2O3—where x = 0, 1, 3 and 5) have been investigated via Differential Scanning Calorimetry (DSC) using nonisothermal technique at different heating rates (5°C, 10°C, 15°C and 20°C/min). The glass compositions were characterized via EDX, XRD, Density and Molar volume analysis. The Moynihan and Kissinger methods were used for the determination of glass transition activation energy (Eg) which decreased from 192 to 118 kJ/mol (Moynihan) and 183 to 113 kJ/mol (Kissinger) with increasing yttrium oxide content. Incorporation of 0 to 5 mol% Y2O3 revealed an approximate decrease of 71 kJ/mol (Ozawa and Augis) for onset crystallization (Ex) and 26 kJ/mol (Kissinger) for crystallization peak activation energies (Ec). Avrami index (n) value analyzed via Matusita–Sakka equation suggested a one‐dimensional crystal growth for the glasses investigated. SEM analysis explored the crystalline morphologies and revealed one‐dimensional needle‐like crystals. Overall, it was found that these glass formulations remained amorphous with up to 5 mol% Y2O3 addition with further increases in Y2O3 content resulting in significant crystallization.
Each year about 7.6 million tons of waste glasses are landfilled without recycling, reclaiming or upcycling. Herein we have developed a solvent free upcycling method for recycled glass waste (RG) by remanufacturing it into porous recycled glass microspheres (PRGMs) with a view to explore removal of organic pollutants such as organic dyes. PRGMs were prepared via flame spheroidisation process and characterised using Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Mercury Intrusion Porosimetry (MIP) analysis. PRGMs exhibited 69% porosity with overall pore volume and pore area of 0.84 cm3/g and 8.6 cm2/g, respectively (from MIP) and a surface area of 8 m2/g. Acid red 88 (AR88) and Methylene blue (MB) were explored as a model source of pollutants. Results showed that removal of AR88 and MB by PRGMs was influenced by pH of the dye solution, PRGMs doses, and dye concentrations. From the batch process experiments, adsorption and coagulation processes were observed for AR88 dye whilst MB dye removal was attributed only to adsorption process. The maximum monolayer adsorption capacity (qe) recorded for AR88, and MB were 78 mg/g and 20 mg/g, respectively. XPS and FTIR studies further confirmed that the adsorption process was due to electrostatic interaction and hydrogen bond formation. Furthermore, dye removal capacity of the PRGMs was also investigated for column adsorption process experiments. Based on the Thomas model, the calculated adsorption capacities at flow rates of 2.2 mL/min and 0.5 mL/min were 250 mg/g and 231 mg/g, respectively which were much higher than the batch scale Langmuir monolayer adsorption capacity (qe) values. It is suggested that a synergistic effect of adsorption/coagulation followed by filtration processes was responsible for the higher adsorption capacities observed from the column adsorption studies. This study also demonstrated that PRGMs produced from recycled glass waste could directly be applied to the next cyclic experiment with similar dye removal capability. Thus, highlighting the circular economy scope of using waste inorganic materials for alternate applications such as pre-screening materials in wastewater treatment applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.