Viral diseases are a major cause of morbidity and mortality and result in a significant public health burden. T lymphocytes first identified in the chordate lineage and constitute a highly sophisticated branch of adaptive immune system. Apart from B cells, it is the only cell type that exhibits antigenic specificities; achieved by gene rearrangement. T cells are unique with respect to diversity of their subsets, which have distinct effector specificities, proliferative abilities, memory generation, and life span. T cells are impactful in viral infections by virtue of their capability to combat intracellular pathogens. The effector functions of T cells are mediated through cytokines/chemokines and by direct cytotoxicity of infected cells. T cell response can be beneficial or detrimental to host; prognosis depending on qualitative and quantitative differences in the response. Persistent viral infections are associated with functionally suboptimal, exhausted T cell responses, which are unable to clear virus. Specific subsets such as regulatory T cells (Tregs) dampen antiviral responses; thereby favouring viral persistence. However, Tregs protect the host from immunopathology by limiting perpetual inflammation. Certain other subsets such as Th17 cells may contribute to autoimmune component of viral infections. The importance of T cells is highlighted by the fact that modern vaccination and therapeutic approaches focus on modulating T cell frequencies and effector functions. This chapter emphasises the understanding how T cells influence outcomes of viral infections, modern vaccination and therapeutic strategies with thrust on T cell biology. Achanta Jagadeesh, A. M. V. N. Prathyusha, G. Mohana Sheela and Pallaval Veera Bramhachari contributed equally with all other contributors. 140 KeywordsAdaptive immune system · T cell responses · Viral infections · Therapeutic strategies 9.1
Aberrant activation of Ras has been implicated in aggressiveness of breast cancer. Among Ras isoforms (H-, K-, and N-), H-Ras has been known to be primarily responsible for invasion and metastasis of breast cancer cells. Phosphorylation of serine (Ser) or threonine (Thr) is a key regulatory mechanism responsible for controlling activities and functions of various proteins involved in intracellular signal transduction. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1, Pin1 changes the conformation of a subset of proteins phosphorylated on Ser/Thr that precedes proline (Pro). In this study we have found that Pin1 is highly overexpressed in human breast tumor tissues and H-Ras transformed human mammary epithelial (H-Ras MCF10A) and MDA-MB-231 breast cancer cells. Notably, Pin1 directly bound to the activated form of H-Ras harbouring a Ser/Thr-Pro motif. Pharmacologic inhibition of Pin1 reduced clonogenicity of MDA-MB-231 human breast cancer cells. Paclitaxel accelerates apoptosis in Pin1 silenced H-Ras MCF10A cells. MDR genes (MDR1 and MRP4) were significantly downregulated in MDA-MB-231 cells stably silenced for Pin1. We speculate that Pin1 interacts with GTP-H-Ras, thereby upregulating the expression of drug resistance genes, which confers survival advantage and aggressiveness of breast cancer cells under chemotherapy.
: SARS-CoV-2, a positive single-stranded RNA enveloped coronavirus, currently poses a global health threat. Drugs with quinoline scaffolds have long been studied to repurpose their useful broad-spectrum properties into treating various diseases, including viruses. Preliminary studies on the quinoline medications, Chloroquine and Hydroxy chloroquine, against SARS-CoV2, have shown to be a potential area of interest for drug development, due to their ability to prevent viral entry, act as anti-inflammatory modulators, and inhibit key enzymes allowing reduced viral infectivity. In addition to Chloroquine and Hydroxychloroquine, we discuss analogs of the drugs to understand the quinoline scaffold’s potential antiviral mechanisms. The heterocyclic scaffold of quinoline can be modified in many ways primarily through the modification of its substituents, we cover these different synthetic derivatives to understand properties that could enhance its antiviral specificity thoroughly. Chloroquine and its analogs can act on various stages of the viral life cycle pre and post entry. In this study, we review Chloroquine and its synthetic and natural analogs for their antiviral properties in a variety of different viruses. Furthermore, we review the compound’s potential abilities to attenuate symptoms associated with viral infections. Natural compounds that share scaffolding to Chloroquine can act as antivirals or attenuate symptoms through stimulate the host immune system or reducing oxidative stress. Furthermore, we discuss perspectives of the drug’s repurposing due to its ability to inhibit beta-hematin formation and to be a Zinc Ionophore.
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (Pin1) has been frequently overexpressed in many types of malignancy, suggesting its oncogenic function. It recognizes phosphorylated serine or threonine (pSer/Thr) of a target protein and isomerizes the adjacent proline (Pro) residue, thereby altering folding, subcellular localization, stability, and function of target proteins. The oncogenic transcription factor, Nrf2 harbors the pSer/Thr-Pro motif. This prompted us to investigate whether Pin1 could bind to Nrf2 and influence its stability and function in the context of implications for breast cancer development and progression. The correlation between Pin1 and Nrf2 in the triple-negative breast cancer cells was validated by RNASeq analysis as well as immunofluorescence staining. Interaction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.