The fundamental theory of the strong interaction-quantum chromodynamics (QCD)—provides the foundational framework with which to describe and understand the key properties of atomic nuclei. A deep understanding of the explicit role of quarks and gluons in nuclei remains elusive however, as these effects have thus far been well-disguised by confinement effects in QCD which are encapsulated by a successful description in terms of effective hadronic degrees of freedom. The observation of the EMC effect has provided an enduring indication for explicit QCD effects in nuclei, and points to the medium modification of the bound protons and neutrons in the nuclear medium. Understanding the EMC effect is a major challenge for modern nuclear physics, and several key questions remain, such as understanding its flavor, spin, and momentum dependence. This manuscript provides a contemporary snapshot of our understanding of the role of QCD in nuclei and outlines possible pathways in experiment and theory that will help deepen our understanding of nuclei in the context of QCD.
We calculate the gravitational form factors of the pion, sigma meson, and rho meson in the Nambu-Jona-Lasinio (NJL) model of quantum chromodynamics. The canonical energy-momentum tensor (EMT) is used in their derivation, allowing the possibility of an antisymmetric contribution when the hadron has intrinsic spin. We show that the asymmetric graviton vertex arising from the canonical EMT satisfies a simpler Ward-Takahashi identity (WTI) than the symmetric graviton vertex of the Belinfante EMT. The necessity of fully dressing the graviton vertex through the relevant Bethe-Salpeter equation is demonstrated for observing both the WTI and a low-energy pion theorem. Lastly, we calculate static moments of the meson EMT decompositions, obtaining predictions for the meson mass radii. We find light cone mass radii of 0.27 fm for the pion, 0.32 fm for the sigma, and 0.39 fm for the rho. For the pion and rho, these are smaller than the light cone charge radii, respectively 0.51 fm and 0.45 fm, while we have a sigma charge radius of zero. Our light cone pion mass radius agrees with a phenomenological extraction from KEKB data. * afreese@anl.gov † icloet@anl.gov arXiv:1903.09222v1 [nucl-th]
We provide the complete decomposition of the local gauge-invariant energy-momentum tensor for spin-1 hadrons, including non-conserved terms for the individual parton flavors and antisymmetric contributions originating from intrinsic spin. We state sum rules for the gravitational form factors appearing in this decomposition and provide relations for the mass decomposition, work balance, total and orbital angular momentum, mass radius, and inertia tensor. Generalizing earlier work, we derive relations between the total and orbital angular momentum and the Mellin moments of twist-2 and 3 generalized parton distributions, accessible in hard exclusive processes with spin-1 targets. Throughout the work, we comment on the unique features in these relations originating from the spin-1 nature of the hadron, being absent in the lower spin cases. * wim.cosyn@ugent.be † sabrina.cotogno@polytechnique.edu ‡ afreese@anl.gov § cedric.lorce@polytechnique.edu 1 We call the form factors "gravitational" since the EMT is usually understood as the source of gravitational interactions. However, we do not measure in practice these form factors through gravity and we do not know the exact form that a theory of quantum gravity will take. Thus, it is unclear whether gravitation sees the symmetric, Belinfante-improved EMT as in general relativity or an asymmetric EMT as in Einstein-Cartan theory [3]. Despite this, we refer to all form factors appearing in either the symmetric or asymmetric EMT as "gravitational" form factors.
We investigate dijet production from protonnucleus collisions at the Large Hadron Collider (LHC) as a means for observing superfast quarks in nuclei with Bjorken x > 1. Kinematically, superfast quarks can be identified through directly measurable jet kinematics. Dynamically, their description requires understanding several elusive properties of nuclear QCD, such as nuclear forces at very short distances, as well as medium modification of parton distributions in nuclei. In the present work, we develop a model for nuclear parton distributions at large x in which the nuclear dynamics at short distance scales are described by two-and three-nucleon short range correlations (SRCs). Nuclear modifications are accounted for using the color screening model, and an improved description of the EMC effect is reached by using a structure function parametrization that includes higher-twist contributions. We apply QCD evolution at the leading order to obtain nuclear parton distributions in the kinematic regime of the LHC, and based on the obtained distributions calculate the cross section for dijet production. We find that the rates of the dijet production in p A collisions at kinematics accessible by ATLAS and CMS are sufficient not only to observe superfast quarks but also to get information about the practically unexplored three-nucleon SRCs in nuclei. Additionally, the LHC can extend our knowledge of the EMC effect to large Q 2 where higher-twist effects are negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.