BackgroundMembers of swarming bacterial consortia compete for nutrients but also use a co-operation mechanism called quorum sensing (QS) that relies on chemical signals as well as other secreted products (“public goods”) necessary for swarming. Deleting various genes of this machinery leads to cheater mutants impaired in various aspects of swarming cooperation.Methodology/Principal FindingsPairwise consortia made of Pseudomonas aeruginosa, its QS mutants as well as B. cepacia cells show that a interspecies consortium can “combine the skills” of its participants so that the strains can cross together barriers that they could not cross alone. In contrast, deleterious mutants are excluded from consortia either by competition or by local population collapse. According to modeling, both scenarios are the consequence of the QS signalling mechanism itself.Conclusion/SignificanceThe results indirectly explain why it is an advantage for bacteria to maintain QS systems that can cross-talk among different species, and conversely, why certain QS mutants which can be abundant in isolated niches, cannot spread and hence remain localized.
Quorum sensing and chemotaxis both affect bacterial behavior on the population level. Chemotaxis shapes the spatial distribution of cells, while quorum sensing realizes a cell-density dependent gene regulation. An interesting question is if these mechanisms interact on some level: Does quorum sensing, a density dependent process, affect cell density itself via chemotaxis? Since quorum sensing often spans across species, such a feedback mechanism may also exist between multiple species. We constructed a microfluidic platform to study these questions. A flow-free, stable linear chemical gradient is formed in our device within a few minutes that makes it suitable for sensitive testing of chemoeffectors: we showed that the amino acid lysine is a weak chemoattractant for Escherichia coli, while arginine is neutral. We studied the effect of quorum sensing signal molecules of Pseudomonas aeruginosa on E. coli chemotaxis. Our results show that N-(3-oxododecanoyl)-homoserine lactone (oxo-C12-HSL) and N-(butryl)-homoserine lactone (C4-HSL) are attractants. Furthermore, we tested the chemoeffector potential of pyocyanin and pyoverdine, secondary metabolites under a quorum sensing control. Pyocyanin is proved to be a weak attractant while pyoverdine are repellent. We demonstrated the usability of the device in co-culturing experiments, where we showed that various factors released by P. aeruginosa affect the dynamic spatial rearrangement of a neighboring E. coli population, while surface adhesion of the cells is also modulated. V C 2015 AIP Publishing LLC. [http://dx
Background: Quorum sensing (QS) is a form of gene regulation based on cell-density that depends on inter-cellular communication. While there are a variety of models for bacterial colony morphology, there is little work linking QS genes to movement in an open system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.