Aquaculture wastewater contains a huge amount of substances that can cause environmental pollution. However, microalgae can absorb these compounds and convert them into useful biomass. In this study, Chlorella minutissima was grown in the wastewater resulting from saline aquaculture. The microalgae were found to effectively utilize nitrogen and phosphorus in the wastewater for its growth. During wastewater treatment, the cell density increased almost fivefold compared to the initial value (OD 680 0.502). Moreover, batch culture resulted in the maximum biomass concentration and productivity of 4.77 g/L and 0.55 g/L/day, respectively. The contents of total nitrogen and total phosphorus in wastewater decreased by 88% and over 99%, respectively. In addition, the content of N-NO 3 was reduced by 88.6%, N-NO 2 by 74.3%, and dissolved orthophosphates (V) by 99%. At the beginning and throughout the experiment, the content of N-NH 4 in wastewater remained below 0.05 mg/L. Furthermore, a high lipid content of 46.4% (w/w) was also obtained from the studied microalgae.
Microalgae are a renewable source of unconventional biomass with potential application in the production of various biofuels. The production of carbon-neutral fuels is necessary for protecting the environment. This work determined the possibility of producing biomass of microalgae belonging to Monoraphidium genus using saline wastewater resulting from proecological salmon farming in the recirculating aquaculture system. The tests were carried out in tubular photobioreactors using LED light. As a part of the analyses, the growth and productivity of microalgal biomass, cell density in culture, and lipid concentration and ash content in biomass were determined. In addition, the concentration of selected phosphorus and nitrogen forms present in wastewater corresponding to the degree of their use by microalgae as a nutrient substrate was determined. The biomass concentration estimated in the tests was 3.79 g·L−1, while the maximum biomass productivity was 0.46 g·L−1·d−1. The cells’ optical density in culture measured at 680 nm was 0.648. The lipid content in biomass was 18.53% (dry basis), and the ash content was 32.34%. It was found that microalgae of the genus Monoraphidium effectively used the nitrogen as well as phosphorus forms present in the wastewater for their growth. The total nitrogen content in the sewage decreased by 82.62%, and total phosphorus content by over 99%. The analysis of the individual forms of nitrogen showed that N-NO3 was reduced by 85.37% and N-NO2 by 78.43%, while orthophosphate (V) dissolved in water was reduced by 99%. However, the content of N-NH4 in wastewater from the beginning till the end of the experiment remained <0.05 mg·L−1.
Fuels and their components accumulate in soil, and many soil organisms are exposed to this pollution. Compared to intensive research on the effect of conventional fuel on soil, very few studies have been conducted on soil ecotoxicity of biofuels. Considering the limited information available, the present study evaluated the changes caused by the presence of biodiesel and diesel fuel in soil. The reaction of higher plants and soil organisms (microbial communities and invertebrates) was analysed. Conventional diesel oil and two types of biodiesel (commercial and laboratory-made) were introduced into the soil. Two levels of contamination were applied—5 and 15% (w/w per dry matter of soil). The plate method was used to enumerate microorganisms from soil contaminated with biodiesel and diesel fuel. Phytotoxicity tests were conducted by a 3-day bioassay based on the seed germination and root growth of higher plant species (Sorghum saccharatum and Sinapis alba). Fourteen-day ecotoxicity tests on earthworm were performed using Eisenia fetida. Based on the results of the conducted tests it was found out that the organisms reacted to the presence of fuels in a diverse manner. As to the microorganisms, both the growth and reduction of their number were noted. The reaction depended on the group of microorganisms, type of fuel and dose of contamination. The lipolytic and amylolytic microorganisms as well as Pseudomonas fluorescens bacteria were particularly sensitive to the presence of fuels, especially biodiesel. Fuels, even at a high dose, stimulated the growth of fungi. Monocotyledonous sugar sorghum plants were more sensitive to the presence of fuels than dicotyledonous white mustard. There was also a significant negative impact of contamination level on plant growth and development. Biodiesel, to a greater extent than conventional fuel, adversely affected the survival and volume of earthworms.
Microalgae are considered to be potentially attractive feedstocks for biodiesel production, mainly due to their fast growth rate and high oil content accumulated in their cells. In this study, the suitability for biofuel production was tested for Chlorella vulgaris, Chlorella fusca, Oocystis submarina, and Monoraphidium strain. The effect of nutrient limitation on microalgae biomass growth, lipid accumulation, ash content, fatty acid profile, and selected physico-chemical parameters of algal biodiesel were analysed. The study was carried out in vertical tubular photobioreactors of 100 L capacity. The highest biomass content at 100% medium dose was found for Monoraphidium 525 ± 29 mg·L−1. A 50% reduction of nutrients in the culture medium decreased the biomass content by 23% for O. submarina, 19% for Monoraphidium, 13% for C. vulgaris and 9% for C. fusca strain. Nutrient limitation increased lipid production and reduced ash content in microalgal cells. The highest values were observed for Oocystis submarina, with a 90% increase in lipids and a 45% decrease in ash content in the biomass under stress conditions. The fatty acid profile of particular microalgae strains was dominated by palmitic, oleic, linoleic, and linoleic acids. Nutrient stress increased the amount of saturated and unsaturated fatty acids affecting the quality of biodiesel, but this was determined by the type of strain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.