Membrane techniques constitute an interesting alternative to conventional activated sludge systems (CAS). In membrane bioreactors (MBR), the biomass separated on membranes is retained independently of sludge sedimentation properties. As a consequence, a high biomass concentration as well as low food to microorganisms ratio can be obtained. Moreover, the development of a characteristic activated sludge population is stimulated by the specific conditions prevailing in MBRs. In the study, the operation and treatment efficiency of the MBR and CAS processes were examined and compared. Simulation was performed with the use of GPS-X software. The effluent quality obtained for the MBR system was either better or comparable to that of CAS. The most significant difference concerned the elimination of total suspended solids, which amounted to 99.8% in the MBR. Regarding nutrients, a low concentration of total phosphorus in the effluent from CAS and MBR was obtained (0.67 gP m−3 and 0.50 gP m−3, respectively). Greater differences were achieved in the case of total nitrogen. Although almost complete nitrification took place in both systems, a lower concentration of nitrate in the effluent from MBR in comparison to CAS, i.e., 11.2 gN m−3 and 14.1 gN m−3, respectively, allowed us to obtain a higher removal of total nitrogen (80.8% and 76.1%, respectively).
Sequencing batch reactors (SBR) can be used as a fill-and draw activated sludge system for wastewater treatment with considerable operating flexibility and the possibility to conduct experiments under standard conditions and extreme case scenarios. Mathematical modeling and computer simulations provide an opportunity to implement existing wastewater processes in modeling software and evaluate different modifications at low costs and no disturbances for on-going processes of full scale WWTP. Additionally, the used model can be calibrated and validated against experimental data from laboratory scale devices. The aim of this study was to simulate the processes occurring in laboratory scale SBR under different aeration strategies. The results include the analysis of the adaptation period of the activated sludge biomass in the SBR, as well as the case of breakdown of treatment process due to stoppage of raw wastewater inflow and the interruption of the aeration and/or mixing. As a result, it can be stated that the oxygen transfer rate should be incorporated in the calibration of biological nutrient removal model in order to effectively visualize the individual contributions of each process.
The presented study involved designing a computer model of a sequencing batch reactor (SBR) at laboratory scale. The data pertaining to the technical aspects of the bioreactor and quality indicators of wastewater constituted the input for the employed simulation tool, i.e. GPS-X software package. The results of a simulation involving a 12-hour operation cycle are presented in this work; each cycle included 6 phases: filling, mixing, aeration, settling, decantation and idling (wasting of excess sludge). The simulations were carried out using two different modes of aeration. Concentration of dissolved oxygen (DO) was maintained at constant level of 2 mgO2/L using the PID controller in the first case. On the other hand, variation of DO concentration was employed in the aeration stage of the second variant, which was achieved using appropriately elaborated set point of oxygen concentration, considering the specific intervals in oxygen supply. The changes observed in DO concentration varied from 0.5 to 2.5 mgO2/L. This research proved that the second variant, involving variation of DO concentration, was characterised by reduced levels of pollution indicators in treated sewage, as well as lower consumption of electricity, both of which contributed towards improving the effluent quality and resulted in significant degree of dephosphatation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.