IntroductionArthritic diseases are characterized by the degradation of collagenous and noncollagenous extracellular matrix (ECM) components in articular cartilage. The increased expression and activity of matrix metalloproteinases (MMPs) is partly responsible for cartilage degradation. This study used proteomics to identify inflammatory proteins and catabolic enzymes released in a serum-free explant model of articular cartilage stimulated with the pro-inflammatory cytokine interleukin 1β (IL-1β). Western blotting was used to quantify the release of selected proteins in the presence or absence of the cyclooxygenase-2 specific nonsteroidal pro-inflammatory drug carprofen.MethodsCartilage explant cultures were established by using metacarpophalangeal joints from horses euthanized for purposes other than research. Samples were treated as follows: no treatment (control), IL-1β (10 ng/ml), carprofen (100 μg/ml), and carprofen (100 μg/ml) + IL-1β (10 ng/ml). Explants were incubated (37°C, 5% CO2) over twelve day time courses. High-throughput nano liquid chromatography/mass spectrometry/mass spectrometry uncovered candidate proteins for quantitative western blot analysis. Proteoglycan loss was assessed by using the dimethylmethylene blue (DMMB) assay, which measures the release of sulfated glycosaminoglycans (GAGs).ResultsMass spectrometry identified MMP-1, -3, -13, and the ECM constituents thrombospondin-1 (TSP-1) and fibronectin-1 (FN1). IL-1β stimulation increased the release of all three MMPs. IL-1β also stimulated the fragmentation of FN1 and increased chondrocyte cell death (as assessed by β-actin release). Addition of carprofen significantly decreased MMP release and the appearance of a 60 kDa fragment of FN1 without causing any detectable cytotoxicity to chondrocytes. DMMB assays suggested that carprofen initially inhibited IL-1β-induced GAG release, but this effect was transient. Overall, during the two time courses, GAG release was 58.67% ± 10.91% (SD) for IL-1β versus 52.91% ± 9.35% (SD) with carprofen + IL-1β.ConclusionsCarprofen exhibits beneficial anti-inflammatory and anti-catabolic effects in vitro without causing any detectable cytotoxicity. Combining proteomics with this explant model provides a sensitive screening system for anti-inflammatory compounds.
A detailed study of 43 newly diagnosed cases of myelodysplastic syndrome (MDS) shows that many of the morphological features of blood and bone marrow are common to the different FAB groups. In addition, there is no clear distinction between the groups with regard to CFU-E, BFU-E or CFU-GM colony growth in vitro or ferrokinetic assessment of erythropoiesis in vivo. The interrelationships between all the parameters we have studied have been examined and there is little correlation between erythroid colony formation in vitro, the percentage erythroblasts in the bone marrow, erythroid output measured by ferrokinetics and the peripheral blood reticulocyte count, all of which appear to measure different aspects of erythropoiesis. Reduced erythroid colony growth and a high degree of ineffective erythropoiesis in vivo are common in all groups and appear to be an early manifestation of abnormal function. Decreasing marrow iron turnover is more closely related to increasing numbers of marrow blast cells than any other index of erythropoiesis.
We have demonstrated that a novel pharmacological inhibitor of NF-kappaB, RO100 inhibits pathological mediators of OA progression with equivalent efficacy as established IL-1beta and TNF-alpha neutralizing strategies. Our findings highlight a potential for developing NF-kappaB targeted therapeutics for positively regulating disease activity and improving clinical outcome in OA.
In osteoarthritis (OA) the turnover of extracellular matrix (ECM) macromolecules is disrupted by catabolic changes that lead to the production of a range of inflammatory mediators and the loss and fragmentation of proteoglycans, fibrillar and non-fibrillar collagens. These events result in the degradation and release of ECM fragments, which are potential biomarkers that can be detected in synovial fluid, blood and urine. Proteomics is increasingly applied in cartilage research and has the potential to advance our understanding of the biology of this tissue. It can also provide mechanistic insight into disease pathogenesis and progression and facilitate biomarker discovery. Here we review the area of cartilage and chondrocyte proteomics and published studies relevant to arthritis and OA biomarkers, highlighting areas of current and future research and development. Markers of tissue turnover in joints have the capacity to reflect disease-relevant biological activity potentially enabling a more rational approach to healthcare management. Therefore proteomic studies of cartilage, chondrocytes and their subcellular fractions and other joint cells and tissues may be particularly relevant in diagnostic orthopedics and therapeutic research.
The protein clusterin has been implicated in the molecular alterations that occur in articular cartilage during osteoarthritis (OA). Clusterin exists in two isoforms with opposing functions, and their roles in cartilage have not been explored. The secreted form of clusterin (sCLU) is a cytoprotective extracellular chaperone that prevents protein aggregation, enhances cell proliferation and promotes viability, whereas nuclear clusterin acts as a pro-death signal. Therefore, these two clusterin isoforms may be putative molecular markers of repair and catabolic responses in cartilage and the ratio between them may be important. In this study, we focused on sCLU and used established, pathophysiologically relevant, in vitro models to understand its role in cytokinestimulated cartilage degradation. The secretome of equine cartilage explants, osteochondral biopsies and isolated unpassaged chondrocytes was analyzed by western blotting for released sCLU, cartilage oligomeric protein (COMP) and matrix metalloproteinases (MMP) 3 and 13, following treatment with the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α. Release of sulfated glycosaminoglycans (sGAG) was determined using the dimethylmethylene blue assay. Clusterin messenger RNA (mRNA) expression was quantified by quantitative real-time polymerase chain reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.