A wide variety of biomass is available all around the world. Most of the biomass exists as a by-product from manufacturing industries. Pulp and paper mills contribute to a higher amount of these biomasses mostly discarded in the landfills creating an environmental burden. Biomasses from other sources have been used to produce different kinds and grades of biomaterials such as those used in industrial and medical applications. The present review aims to investigate the availability of biomass from pulp and paper mills and show sustainable routes for the production of high value-added biomaterials. The study reveals that using conventional and integrated biorefinery technology the ample variety and quantity of waste generated from pulp and paper mills can be converted into wealth. As per the findings of the current review, it is shown that high-performance carbon fiber and bioplastic can be manufactured from black liquor of pulping waste; the cellulosic waste from sawdust and sludge can be utilized for the synthesis of CNC and regenerated fibers such as viscose rayon and acetate; the mineral-based pulping wastes and fly ash can be used for manufacturing of different kinds of biocomposites. The different biomaterials obtained from the pulp and paper mill biomass can be used for versatile applications including conventional, high performance, and smart materials. Through customization and optimization of the conversion techniques and product manufacturing schemes, a variety of engineering materials can be obtained from pulp and paper mill wastes realizing the current global waste to wealth developmental approach.
Development of smart textiles is an emerging discipline in the last two decades where a conductive element is integrated into a textile material by some means. The purpose of this research was to develop a conductive textile fabric by coating with charcoal as a conductive element. The charcoal was produced by carbonizing the eucalyptus wood at a temperature of 928 °C for 37 min producing 59.17% w/w of fixed carbon yield and conductivity of 463.34 Sm−1 (Siemens per meter) compared to immeasurable conductivity of the wood. This was followed by characterization of physical and chemical properties of charcoal. Thereafter, a cotton fabric was pad-coated with a dispersion based on the charcoal. The paper herein reports the results of preparing different recipes using different quantities of charcoal particles with other components of the coating mixture, which was tested to obtain the best coating in terms of electrical conductivity. The optimal concentration of the conductive particles of the charcoal was studied. Performance evaluation of the coated fabric was assessed for the durability of fabric towards different fastness agents. The effect of charcoal loading on thermal and sensorial comfort of the fabric in addition to the air and water permeability was studied and a significant change was observed. Finally, a proof of concept was developed to demonstrate if the resulting pieces of information during the process were viable. As observed, the pad-coated cotton fabric using charcoal showed increased electrical conductivity from 1.58 × 10−12 Scm−1 (Siemens per centimeter) for the controlled sample to 124.49 Scm−1 for the coated sample designating that the resulting fabric is in a conductor category.
The meat processing industry produces a huge quantity of by-products, approximately 150 million tonnes per year. The live weight of the animals is distinguished as edible, inedible, and discardable by-products, with the discardable parts equating to 66%, 52%, and 80% of the overall live weight of cattle, lamb, and pigs, respectively. Only a small percentage of those by-products are nowadays exploited for the production of high added value products such as animal feed, glue, fertilizers, etc., whereas the main management method is direct disposal to landfills. As such, the current disposal methodologies of these by-products are problematic, contributing to environmental contamination, soil degradation, air pollution, and possible health problems. Nevertheless, these by-products are rich in collagen, keratin, and minerals, being thus promising sources of high-value materials such as bioenergy, biochemical and other biomaterials that could be exploited in various industrial applications. In this paper, the possible utilization of slaughterhouse by-products for the production of various high added value materials is discussed. In this context, the various processes presented provide solutions to more sustainable management of the slaughterhouse industry, contributing to the reduction of environmental degradation via soil and water pollution, the avoidance of space depletion due to landfills, and the development of a green economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.