The use of hydrogel in tissue engineering is not entirely new. In the last six decades, researchers have used hydrogel to develop artificial organs and tissue for the diagnosis of real-life problems and research purposes. Trial and error dominated the first forty years of tissue generation. Nowadays, biomaterials research is constantly progressing in the direction of new materials with expanded capabilities to better meet the current needs. Knowing the biological phenomenon at the interaction among materials and the human body has promoted the development of smart bio-inert and bio-active polymeric materials or devices as a result of vigorous and consistent research. Hydrogels can be tailored to contain properties such as softness, porosity, adequate strength, biodegradability, and a suitable surface for adhesion; they are ideal for use as a scaffold to provide support for cellular attachment and control tissue shapes. Perhaps electrical conductivity in hydrogel polymers promotes the interaction of electrical signals among artificial neurons and simulates the physiological microenvironment of electro-active tissues. This paper presents a review of the current state-of-the-art related to the complete process of conductive hydrogel manufacturing for tissue engineering from cellulosic materials. The essential properties required by hydrogel for electro-active-tissue regeneration are explored after a short overview of hydrogel classification and manufacturing methods. To prepare hydrogel from cellulose, the base material, cellulose, is first synthesized from plant fibers or generated from bacteria, fungi, or animals. The natural chemistry of cellulose and its derivatives in the fabrication of hydrogels is briefly discussed. Thereafter, the current scenario and latest developments of cellulose-based conductive hydrogels for tissue engineering are reviewed with an illustration from the literature. Finally, the pro and cons of conductive hydrogels for tissue engineering are indicated.
Development of smart textiles is an emerging discipline in the last two decades where a conductive element is integrated into a textile material by some means. The purpose of this research was to develop a conductive textile fabric by coating with charcoal as a conductive element. The charcoal was produced by carbonizing the eucalyptus wood at a temperature of 928 °C for 37 min producing 59.17% w/w of fixed carbon yield and conductivity of 463.34 Sm−1 (Siemens per meter) compared to immeasurable conductivity of the wood. This was followed by characterization of physical and chemical properties of charcoal. Thereafter, a cotton fabric was pad-coated with a dispersion based on the charcoal. The paper herein reports the results of preparing different recipes using different quantities of charcoal particles with other components of the coating mixture, which was tested to obtain the best coating in terms of electrical conductivity. The optimal concentration of the conductive particles of the charcoal was studied. Performance evaluation of the coated fabric was assessed for the durability of fabric towards different fastness agents. The effect of charcoal loading on thermal and sensorial comfort of the fabric in addition to the air and water permeability was studied and a significant change was observed. Finally, a proof of concept was developed to demonstrate if the resulting pieces of information during the process were viable. As observed, the pad-coated cotton fabric using charcoal showed increased electrical conductivity from 1.58 × 10−12 Scm−1 (Siemens per centimeter) for the controlled sample to 124.49 Scm−1 for the coated sample designating that the resulting fabric is in a conductor category.
Flexible supercapacitors are highly demanding due to their wearability, washability, lightweight property and rollability. In this paper, a comprehensive review on flexible supercapacitors based on conductive polymers such as polypyrrole (PPy), polyaniline (PANI) and poly(3,4-ethylenedioxtthiophne)-polystyrene sulfonate (PEDOT:PSS). Methods of enhancing the conductivity of PEDOT:PSS polymer using various composites and chemical solutions have been reviewed in detail. Furthermore, supercapacitors based on carbonized banana peels and methods of activation have been discussed in point. This review covers the up-to-date progress achieved in conductive polymer-based materials for supercapacitor electrodes. The effect of various composites with PEDOT:PSS have been discussed. The review result indicated that flexible, stretchable, lightweight, washable, and disposable wearable electronics based on banana peel and conductive polymers are highly demanding.
Treating wound is challenging if there is microbial colonization. In this paper, we tried to review comparison of bacterial inhibition zone of different herbal plant bioactive loaded polymer electrospun nanofibrous wound dressings. A systematic literature search called preferred reporting items for systematic reviews and meta-analyses (PRISMA) was used to review bacterial inhibition zone of the different herbal plant bioactive loaded polymer electrospun nanofibrous mats used for wound dressing applications. The literatures were searched from PubMed, Scopus, Web of Science, and Google Scholar databases published in English from 2010 to 2021. Two hundred articles were searched out; from these, 93 articles are selected and studied their bacterial inhibition zone, among them eight have the highest bacterial inhibition zone greater than or equal to 20 mm. From the studied plant bioactive extract loaded polymer electrospun nanofibrous mat wound dressings, PVA/ Tridax procumbensviz have the highest antibacterial property (42 mm and 35 mm bacterial inhibition zone to Staphylococcus aureus and Escherichia coli, respectively). The second highest antibacterial property is PVA /honey/Curcuma longa with bacterial inhibition zone of 38 mm to S. aureus and the third one is PCL/carboxyethyl chitosan/PVA/ Matricaria chamomile L. with an inhibition zone of 37.5 mm to E. coli bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.