In colloidal science and bioelectrostatics, the linear Poisson Boltzmann Equation (LPBE) has been used extensively for the calculation of potential and surface charge density. Its fundamental assumption rests on the premises of low surface potential. In the geological sequestration of carbon dioxide in saline aquifers, very low pH conditions coupled with adsorption induced reduction of surface charge density result in low pH conditions that fit into the LPB theory. In this work, the Gouy-Chapman model of the electrical double layer has been employed in addition to the LPBE theory to develop a contact angle model that is a second-degree polynomial in pH. Our model contains the point of zero charge pH of solid surface. To render the model applicable to heterogeneous surfaces, we have further developed a model for the effective value of the point of zero charge pH. The point of zero charge pH model when integrated into our model enabled us to determine the point of zero charge pH of sandstone, quartz and mica using literature based experimental data. In this regard, a literature based thermodynamic model was used to calculate carbon dioxide solubility and pH of aqueous solution. Values of point of zero charge pH determined in this paper agree with reported ones. The novelty of our work stems from the fact that we have used the LPB theory in the context of interfacial science completely different from the classical approach, where the focus is on interparticle electrostatics involving colloidal stabilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.