Sistem manajemen mutu pendidikan ISO 21001:2018 merupakan sistem yang diharapkan mampu memberikan keefektifan dan keefesienan pada pengelolaan institusi Pendidikan. Untuk itu, Akademi Telkom Jakarta saat ini akan melakukan pergantian standar mutu dari ISO 9001:2015 ke ISO 21001:2018. Tujuan dari penelitian ini untuk mengetahui kesiapan institusi dalam penerapan sistem mutu yang baru dan mengetahui titik lemah dalam pelaksanaan sistem mutu sebelumnya. Metode gap analysis digunakan untuk mengetahui kesenjangan penerapan 7 standar iso 21001:2018 (standar 4 sampai dengan 10). Sedangkan metode Intercative model diginakan untuk menganalisa penerapan sebelas prinsip ISO 21001:2018. Hasil penelitian menunjukan gap analysis mendapat nilai rata-rata sebesar 85,24%. Skoring dari nilai ini adalah penerapan standar dari setiap klausul diajalankan dengan baik dengan catatan tidak konsisten. Sedangkan hasil interactive model, dari sebelas prinsip dijalankan dengan baik kecuali prinsip ke-tiga tentang keterlibatan orang dan prinsip ke-empat tentang pendekatan proses. Kesimpulan dari penelitian ini adalah Akademi Telkom Jakarta dapat melanjutkan sertifikasi ISO 21001:2018. Karena telah memenuhi standar dan prinsip sistem manajemen mutu Pendidikan. Akan tetapi perlu sedikit peningkatan pada komitmen dan pengelolaannya.
<p>Ikan Gurami (<em>Osphronemus Goramy)</em> merupakan ikan yang banyak dibudidayakan dan dikomsumsi masyarakat ini menjadi sektor unggulan di beberapa wilayah kabupaten Banyumas. Ikan gurami yang dibudidayakan oleh masyarakat Banyumas, sebenarnya bukan tanpa hambatan. Salah satu hambatan bagi peternak gurami adalah penyakit yang disebabkan oleh bakteri. Pada penelitian ini penulis membuat sistem pakar untuk mendiagnosis penyakit ikan Gurami yang disebabkan bakteri. Penelitian ini menggunakan metode<em> Case Based Reasoning</em> dan <em>Similarity</em> <em>Nearest Neighbor</em> untuk mendapatkan solusi yang terbaik dari kasus yang di identifikasi. Metode tersebut membandingkan antara kasus lama dengan kasus baru dan menghitung suatu nilai <em>similarity </em>kasus. Nilai <em>similarity</em> tertinggi dapat dijadikan kesimpulan untuk kasus yang paling mirip dengan diagnosa pakar. Sehingga dari kedua metode tersebut dapat dihasilkan sistem pakar yang dapat mendiagnosis dan menganalisis sesuai dengan nilai kemiripan gejala terhadap penyakit, serta menampilkan solusi penanganan dari penyakit yang didiagnosis. Hasil pengujian antar kasus dan sistem menggunakan perhitungan <em>similarity</em> mencapai nilai terbaik yaitu 100%. Hasil pengujian akurasi sistem untuk diagnosis yang sesuai dengan pikiran pakar, memperoleh hasil sebesar 93,33% dari 30 kasus yang diuji dengan sistem. Kesimpulan dari hasil tersebut adalah sistem dapat dikatakan layak untuk mendiagnosis penyakit Gurami yang disebabkan bakteri sesuai dengan yang dipikirkan pakar.</p><p> </p><p><em><strong>Abstract</strong></em></p><p><em>Gurami (Osphronemus Goramy) is a fish that is widely cultivated and consumed by the community. This fish is a leading sector in several regions of Banyumas district. Gouramy which is cultivated by the Banyumas people, is actually not without obstacles. One obstacle for gouramy breeders is a disease caused by bacteria. Reporting from the online news portal, circulating in February 2018 circulated that news about Gurami farmers was losing money because thousands of broodstock fish that had been raised to death were attacked by bacterial diseases, namely Aeromoniasis. Experts who handle this are limited, namely only 2 people in the Banyumas Regency.</em><em> </em><em>In this study the authors made an expert system to diagnose Gurami fish disease caused by bacteria. This study uses the Case Based Reasoning (CBR) and Nearest Neighbor methods used to get the best solution from the identified case. The CBR method compares the old case with the new case and calculates a case similarity value. The system was built with 13 symptoms and 3 Gurami diseases caused by bacteria. Each symptom each has a weight of 5, 3, and 1. The highest similarity value can be used as a conclusion for the case most similar to the expert diagnosis. So that from these two methods an expert system can be produced that can diagnose and analyze according to the similarity of symptoms to the disease, as well as display solutions to the treatment of diagnosed diseases. The test results are between cases and the system uses the similarity calculation to achieve the best value of 100%. The results of the system accuracy test for diagnoses that are in accordance with the expert's mind, obtained results of 93.33% from 30 cases tested with the system. The conclusion of these results is that the system can be said to be feasible to diagnose Gurami disease caused by bacteria according to what experts think.</em></p><p><em><strong><br /></strong></em></p>
Hydroponic is one of the solutions of gardening methods using water as a nutrition medium. Usually, maintaining hydroponic plant quality and water nutrients are done manually and require human efforts, such as the degree of acidity or wetness (pH), TDS (Total Dissolved Solids), and nutrient temperature. With the Internet of Things technology, we can automate hydroponic control by measuring the nutrients' TDS, pH, and temperature values and controlling water nutrition by pump nutrition needs for hydroponic plants. This research uses the NFT (Nutrient Film Technique) for the hydroponic system and uses lettuce as the nutrition parameter. The lettuce parameters are pH, TDS, and Water Temperature equal to the sensor we used in the proposed IoT system. The condition has 27 classifications, and we use this classification as a reference in decision-making, using the K-Nearest Neighbor (KNN) algorithm to activate the actuator. We improve the simultaneous actuator from previous research with specified intervals and duration to achieve ideal nutritional conditions. The other improvement is that we collect more data and more testing times. The accuracy was 91.2%, with k = 3. From the evaluation results, the accuracy of KNN is quite high and has an advantage, which has better accuracy than the other algorithms and can activate actuator simultaneously. We conclude that the hydroponic nutrient automation system using the Internet of Things method is ready for real planting use with this improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.