The present study of a structurally-failed tooth with prior REP demonstrates that the tissue formed within the root canal space was fibrous connective tissue with cementum-like deposition in the canal space. No evidence of dentin- or pulp-like tissue was found.
Aim:Dental pulp stem cells, which are primarily derived from the pulp tissues of human teeth, have rarely been obtained from natal teeth. This study investigated the stem cell and differentiation markers of the dental pulp of natal teeth using immunohistochemistry.Materials & Methods:The pulp tissue from extracted natal teeth (n = 2) of a 20-day-old healthy male was examined for immunohistochemical expression of stem cell (Oct-4 and SOX 2) and differentiation markers (Nestin, CD 44, desmin, osteopontin and Ki- 67).Results:The pulp tissue of the natal teeth expressed immunopositivity for nestin, CD 44 and SOX2.Conclusion:Natal teeth, if preserved properly, could serve as sources of dental pulp stem cells that are an improvement on deciduous teeth.
The volumetric change that occurs in the pulp space over time represents a critical measure when it comes to determining the secondary outcomes of regenerative endodontic procedures (REPs). However, to date, only a few studies have investigated the accuracy of the available domain-specialized medical imaging tools with regard to three-dimensional (3D) volumetric assessment. This study sought to compare the accuracy of two different artificial intelligence-based medical imaging programs namely OsiriX MD (v 9.0, Pixmeo SARL, Bernex Switzerland, https://www.osirix-viewer.com) and 3D Slicer (http://www.slicer.org), in terms of estimating the volume of the pulp space following a REP. An Invitro assessment was performed to check the reliability and sensitivity of the two medical imaging programs in use. For the subsequent clinical application, pre- and post-procedure cone beam computed tomography scans of 35 immature permanent teeth with necrotic pulp and periradicular pathosis that had been treated with a cell-homing concept-based REP were processed using the two biomedical DICOM software programs (OsiriX MD and 3D Slicer). The volumetric changes in the teeth’s pulp spaces were assessed using semi-automated techniques in both programs. The data were statistically analyzed using t-tests and paired t-tests (P = 0.05). The pulp space volumes measured using both programs revealed a statistically significant decrease in the pulp space volume following the REP (P < 0.05), with no significant difference being found between the two programs (P > 0.05). The mean decreases in the pulp space volumes measured using OsiriX MD and 3D Slicer were 25.06% ± 19.45% and 26.10% ± 18.90%, respectively. The open-source software (3D Slicer) was found to be as accurate as the commercially available software with regard to the volumetric assessment of the post-REP pulp space. This study was the first to demonstrate the step-by-step application of 3D Slicer, a user-friendly and easily accessible open-source multiplatform software program for the segmentation and volume estimation of the pulp spaces of teeth treated with REPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.