Considering the raising socio-economic burden of autism spectrum disorder (ASD), timely and evidence-driven public policy decision making and communication of the latest guidelines pertaining to the treatment and management of the disorder is crucial. Yet evidence suggests that policy makers and medical practitioners do not always have a good understanding of the practices and relevant beliefs of ASD-afflicted individuals' carers who often follow questionable recommendations and adopt advice poorly supported by scientific data. The key goal of the present work is to explore the idea that Twitter, as a highly popular platform for information exchange, could be used as a data-mining source to learn about the population affected by ASD -- their behaviour, concerns, needs etc. To this end, using a large data set of over 11 million harvested tweets as the basis for our investigation, we describe a series of experiments which examine a range of linguistic and semantic aspects of messages posted by individuals interested in ASD. Our findings, the first of their nature in the published scientific literature, strongly motivate additional research on this topic and present a methodological basis for further work.Comment: Social Network Analysis and Mining, 201
Understanding the data and reaching accurate conclusions are of paramount importance in the present era of big data. Machine learning and probability theory methods have been widely used for this purpose in various fields. One critically important yet less explored aspect is capturing and analyzing uncertainties in the data and model. Proper quantification of uncertainty helps to provide valuable information to obtain accurate diagnosis. This paper reviewed related studies conducted in the last 30 years (from 1991 to 2020) in handling uncertainties in medical data using probability theory and machine learning techniques. Medical data is more prone to uncertainty due to the presence of noise in the data. So, it is very important to have clean medical data without any noise to get accurate diagnosis. The sources of noise in the medical data need to be known to address this issue. Based on the medical data obtained by the physician, diagnosis of disease, and treatment plan are prescribed. Hence, the uncertainty is growing in healthcare and there is limited knowledge to address these problems. Our findings indicate that there are few challenges to be addressed in handling the uncertainty in medical raw data and new models. In this work, we have summarized various methods employed to overcome this problem. Nowadays, various novel deep learning techniques have been proposed to deal with such uncertainties and improve the performance in decision making.
We present the coronary artery disease (CAD) database, a comprehensive resource, comprising 126 papers and 68 datasets relevant to CAD diagnosis, extracted from the scientific literature from 1992 and 2018. These data were collected to help advance research on CAD-related machine learning and data mining algorithms, and hopefully to ultimately advance clinical diagnosis and early treatment. To aid users, we have also built a web application that presents the database through various reports.
The autism spectrum disorder (ASD) is increasingly being recognized as a major public health issue which affects approximately 0.5-0.6% of the population. Promoting the general awareness of the disorder, increasing the engagement with the affected individuals and their carers, and understanding the success of penetration of the current clinical recommendations in the target communities, is crucial in driving research as well as policy. The aim of the present work is to investigate if Twitter, as a highly popular platform for information exchange, can be used as a data-mining source which could aid in the aforementioned challenges. Specifically, using a large data set of harvested tweets, we present a series of experiments which examine a range of linguistic and semantic aspects of messages posted by individuals interested in ASD. Our findings, the first of their nature in the published scientific literature, strongly motivate additional research on this topic and present a methodological basis for further work.
Background: Breast cancer is a collection of multiple tissue pathologies, each with a distinct molecular signature that correlates with patient prognosis and response to therapy. Accurately differentiating between breast cancer sub-types is an important part of clinical decision-making. Although this problem has been addressed using machine learning methods in the past, there remains unexplained heterogeneity within the established sub-types that cannot be resolved by the commonly used classification algorithms. Methods: In this paper, we propose a novel deep learning architecture, called DeepTRIAGE (Deep learning for the TRactable Individualised Analysis of Gene Expression), which uses an attention mechanism to obtain personalised biomarker scores that describe how important each gene is in predicting the cancer sub-type for each sample. We then perform a principal component analysis of these biomarker scores to visualise the sample heterogeneity, and use a linear model to test whether the major principal axes associate with known clinical phenotypes. Results: Our model not only classifies cancer sub-types with good accuracy, but simultaneously assigns each patient their own set of interpretable and individualised biomarker scores. These personalised scores describe how important each feature is in the classification of any patient, and can be analysed post-hoc to generate new hypotheses about latent heterogeneity. Conclusions: We apply the DeepTRIAGE framework to classify the gene expression signatures of luminal A and luminal B breast cancer sub-types, and illustrate its use for genes as well as the GO and KEGG gene sets. Using DeepTRIAGE, we calculate personalised biomarker scores that describe the most important features for classifying an individual patient as luminal A or luminal B. In doing so, DeepTRIAGE simultaneously reveals heterogeneity within the luminal A biomarker scores that significantly associate with tumour stage, placing all luminal samples along a continuum of severity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.