Explosive blast has been extensively used as a tactical weapon in Operation Iraqi Freedom (OIF) and more recently in Operation Enduring Freedom(OEF). The polytraumatic nature of blast injuries is evidence of their effectiveness,and brain injury is a frequent and debilitating form of this trauma. In-theater clinical observations of brain-injured casualties have shown that edema, intracranial hemorrhage, and vasospasm are the most salient pathophysiological characteristics of blast injury to the brain. Unfortunately, little is known about exactly how an explosion produces these sequelae as well as others that are less well documented. Consequently, the principal objective of the current report is to present a swine model of explosive blast injury to the brain. This model was developed during Phase I of the DARPA (Defense Advanced Research Projects Agency) PREVENT (Preventing Violent Explosive Neurotrauma) blast research program. A second objective is to present data that illustrate the capabilities of this model to study the proximal biomechanical causes and the resulting pathophysiological, biochemical,neuropathological, and neurological consequences of explosive blast injury to the swine brain. In the concluding section of this article, the advantages and limitations of the model are considered, explosive and air-overpressure models are compared, and the physical properties of an explosion are identified that potentially contributed to the in-theater closed head injuries resulting from explosions of improvised explosive devices (IEDs).
Neuronal and glial proteins detected in the peripheral circulating blood after injury can reflect the extent of the damage caused by blast traumatic brain injury (bTBI). The temporal pattern of their serum levels can further predict the severity and outcome of the injury. As part of characterizing a large-animal model of bTBI, we determined the changes in the serum levels of S100B, neuron-specific enolase (NSE), myelin basic protein (MBP), and neurofilament heavy chain (NF-H). Blood samples were obtained prior to injury and at 6, 24, 72 h, and 2 weeks post-injury from animals with different severities of bTBI; protein levels were determined using reverse phase protein microarray (RPPM) technology. Serum levels of S100B, MBP, and NF-H, but not NSE, showed a time-dependent increase following injury. The detected changes in S100B and MBP levels showed no correlation with the severity of the injury. However, serum NF-H levels increased in a unique, rapid manner, peaking at 6 h post-injury only in animals exposed to severe blast with poor clinical and pathological outcomes. We conclude that the sudden increase in serum NF-H levels following bTBI may be a useful indicator of injury severity. If additional studies verify our findings, the observed early peak of serum NF-H levels can be developed into a useful diagnostic tool for predicting the extent of damage following bTBI.
Explosive blast has been extensively used as a tactical weapon in Operation Iraqi Freedom (OIF) and more recently in Operation Enduring Freedom(OEF). The polytraumatic nature of blast injuries is evidence of their effectiveness,and brain injury is a frequent and debilitating form of this trauma. In-theater clinical observations of brain-injured casualties have shown that edema, intracranial hemorrhage, and vasospasm are the most salient pathophysiological characteristics of blast injury to the brain. Unfortunately, little is known about exactly how an explosion produces these sequelae as well as others that are less well documented. Consequently, the principal objective of the current report is to present a swine model of explosive blast injury to the brain. This model was developed during Phase I of the DARPA (Defense Advanced Research Projects Agency) PREVENT (Preventing Violent Explosive Neurotrauma) blast research program. A second objective is to present data that illustrate the capabilities of this model to study the proximal biomechanical causes and the resulting pathophysiological, biochemical,neuropathological, and neurological consequences of explosive blast injury to the swine brain. In the concluding section of this article, the advantages and limitations of the model are considered, explosive and air-overpressure models are compared, and the physical properties of an explosion are identified that potentially contributed to the in-theater closed head injuries resulting from explosions of improvised explosive devices (IEDs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.