A sustainable solution for the global construction industry can be partial substitution of Ordinary Portland Cement (OPC) by use of supplementary cementitious materials (SCMs) sourced from industrial end-of-life (EOL) products that contain calcareous, siliceous and aluminous materials. Candidate EOL materials include fly ash (FA), silica fume (SF), natural pozzolanic materials like sugarcane bagasse ash (SBA), palm oil fuel ash (POFA), rice husk ash (RHA), mine tailings, marble dust, construction and demolition debris (CDD). Studies have revealed these materials to be cementitious and/or pozzolanic in nature. Their use as SCMs would decrease the amount of cement used in the production of concrete, decreasing carbon emissions associated with cement production. In addition to cement substitution, EOL products as SCMs have also served as coarse and also fine aggregates in the production of eco-friendly concretes.
This paper proposes the development of a biomimetic composite based on naturally derived biomaterials. This freeze-dried scaffold contains a microwave-synthesized form of biomimetic hydroxyapatite (HAp), using the interwoven hierarchical structure of eggshell membrane (ESM) as bio-template. The bone regeneration capacity of the scaffold is enhanced with the help of added tricalcium phosphate from bovine Bone ash (BA). With the addition of Gelatin (Gel) and Chitosan (CS) as organic matrix, the obtained composite is characterized by the ability to stimulate the cellular response and might accelerate the bone healing process. Structural characterization of the synthesized HAp (ESM) confirms the presence of both hydroxyapatite and monetite phases, in accordance with the spectroscopy results on the ESM before and after the microwave thermal treatment (the presence of phosphate group). Morphology studies on all individual components and final scaffold, highlight their morphology and porous structure, characteristics that influence the biocompatibility of the scaffold. Porosity, swelling rate and the in vitro cytotoxicity assays performed on amniotic fluid stem cells (AFSC), demonstrate the effective biocompatibility of the obtained materials. The experimental results presented in this paper highlight an original biocomposite scaffold obtained from naturally derived materials, in a nontoxic manner.
This research focused on the synthesis of apatite, starting from a natural biogenic calcium source (egg-shells) and its chemical and morpho-structural characterization in comparison with two commercial xenografts used as a bone substitute in dentistry. The synthesis route for the hydroxyapatite powder was the microwave-assisted hydrothermal technique, starting from annealed egg-shells as the precursor for lime and di-base ammonium phosphate as the phosphate precursor. The powders were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM), X-ray fluorescence spectroscopy (XRF), and cytotoxicity assay in contact with amniotic fluid stem cell (AFSC) cultures. Compositional and structural similarities or differences between the powder synthesized from egg-shells (HA1) and the two commercial xenograft powders—Bio-Oss®, totally deproteinized cortical bovine bone, and Gen-Os®, partially deproteinized porcine bone—were revealed. The HA1 specimen presented a single mineral phase as polycrystalline apatite with a high crystallinity (Xc 0.92), a crystallite size of 43.73 nm, preferential growth under the c axes (002) direction, where it mineralizes in bone, a nano-rod particle morphology, and average lengths up to 77.29 nm and diameters up to 21.74 nm. The surface of the HA1 nanoparticles and internal mesopores (mean size of 3.3 ± 1.6 nm), acquired from high-pressure hydrothermal maturation, along with the precursor’s nature, could be responsible for the improved biocompatibility, biomolecule adhesion, and osteoconductive abilities in bone substitute applications. The cytotoxicity assay showed a better AFSC cell viability for HA1 powder than the commercial xenografts did, similar oxidative stress to the control sample, and improved results compared with Gen-Os. The presented preliminary biocompatibility results are promising for bone tissue regeneration applications of HA1, and the study will continue with further tests on osteoblast differentiation and mineralization.
In this study, multi-walled carbon nanotubes (MWCNTs) were decorated with different types of nanoparticles (NPs) in order to obtain hybrid materials with improved antimicrobial activity. Structural and morphological analysis, such as Fourier transformed infrared spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, environmental scanning electron microscopy/energy-dispersive X-ray spectroscopy and the Brunauer–Emmett–Teller technique were used in order to investigate the decoration of the nanotubes with NPs. Analysis of the decorated nanotubes showed a narrow size distribution of NPs, 7–13 nm for the nanotubes decorated with zinc oxide (ZnO) NPs, 15–33 nm for the nanotubes decorated with silver (Ag) NPs and 20–35 nm for the nanotubes decorated with hydroxyapatite (HAp) NPs, respectively. The dispersion in water of the obtained nanomaterials was improved for all the decorated MWCNTs, as revealed by the relative absorbance variation in time of the water-dispersed nanomaterials. The obtained nanomaterials showed a good antimicrobial activity; however, the presence of the NPs on the surface of MWCNTs improved the nanocomposites’ activity. The presence of ZnO and Ag nanoparticles enhanced the antimicrobial properties of the material, in clinically relevant microbial strains. Our data proves that such composite nanomaterials are efficient antimicrobial agents, suitable for the therapy of severe infection and biofilms.
Background and objectives: In the last few years, graphene oxide has attracted much attention in biomedical applications due to its unique physico-chemical properties and can be used as a carrier for both hydrophilic and/or hydrophobic biomolecules. The purpose of this paper was to synthesize graphene oxide and to obtain multifunctional platforms based on graphene oxide as a nanocarrier loaded with few biologically active substances with anticancer, antimicrobial or anti-inflammatory properties such as gallic acid, caffeic acid, limonene and nutmeg and cembra pine essential oils. Materials and Methods: Graphene oxide was obtained according to the method developed by Hummers and further loaded with biologically active agents. The obtained platforms were characterized using FTIR, HPLC, TGA, SEM, TEM and Raman spectroscopy. Results: Gallic acid released 80% within 10 days but all the other biologically active agents did not release because their affinity for the graphene oxide support was higher than that of the phosphate buffer solution. SEM characterization showed the formation of nanosheets and a slight increase in the degree of agglomeration of the particles. The ratio I2D/IG for all samples was between 0.18 for GO-cembra pine and 0.27 for GO-limonene, indicating that the GO materials were in the form of multilayers. The individual GO sheets were found to have less than 20 µm, the thickness of GO was estimated to be ~4 nm and an interlayer spacing of about 2.12 Å. Raman spectroscopy indicated that the bioactive substances were adsorbed on the surface and no degradation occurred during loading. Conclusions: These findings encourage this research to further explore, both in vitro and in vivo, the biological activities of bioactive agents for their use in medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.